AI Article Synopsis

  • Tissue engineering using human stem cells, specifically satellite cells (myoblasts), shows promise for treating muscle loss by creating functional muscle tissue in the lab.
  • The study aimed to analyze the expression of myogenic markers during satellite cell differentiation into multinucleated myotubes by using low and high concentrations of growth factors over various incubation periods.
  • Results indicated that satellite cells in differentiation medium displayed characteristics of mature skeletal muscle through specific gene expression, whereas those in growth medium lacked full muscle differentiation features.

Article Abstract

Tissue engineering of skeletal muscle is an encouraging possibility for the treatment of muscle loss through the creation of functional muscle tissue in vitro from human stem cells. Currently, the preferred stem cells are primary, non-immunogenic satellite cells ( = myoblasts). The objective of this study was to determine the expression patterns of myogenic markers within the human satellite cell population during their differentiation into multinucleated myotubes for an accurate characterization of stem cell behaviour. Satellite cells were incubated (for 1, 4, 8, 12 or 16 days) with a culture medium containing either a low [ = differentiation medium (DM)] or high [ = growth medium (GM)] concentration of growth factors. Furthermore, we performed a quantitative gene expression analysis of well-defined differentiation makers: myogenic factor 5 (MYF5), myogenin (MYOG), skeletal muscle αactin1 (ACTA1), embryonic (MYH3), perinatal (MYH8) and adult skeletal muscle myosin heavy chain (MYH1). Additionally, the fusion indices of forming myotubes of MYH1, MYH8 and ACTA1 were calculated. We show that satellite cells incubated with DM expressed multiple characteriztic features of mature skeletal muscles, verified by time-dependent upregulation of MYOG, MYH1, MYH3, MYH8 and ACTA1. However, satellite cells incubated with GM did not reveal all morphological aspects of muscle differentiation. Immunocytochemical investigations with antibodies directed against the differentiation markers showed correlations between the gene expression and differentiation. Our data provide information about time-dependent gene expression of differentiation markers in human satellite cells, which can be used for maturation analyses in skeletal muscle tissue-engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/term.417DOI Listing

Publication Analysis

Top Keywords

satellite cells
20
gene expression
16
skeletal muscle
16
cells incubated
12
differentiation
8
quantitative gene
8
expression analysis
8
stem cells
8
markers human
8
human satellite
8

Similar Publications

PGM3 insufficiency: a glycosylation disorder causing a notable T cell defect.

Front Immunol

December 2024

Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.

Background: Hypomorphic mutations in the () gene cause a glycosylation disorder that leads to immunodeficiency. It is often associated with recurrent infections and atopy. The exact etiology of this condition remains unclear.

View Article and Find Full Text PDF

Analyzing Muscle Stem Cell Function Ex Vivo.

Methods Mol Biol

January 2025

Brandenburg Technische Universität Cottbus-Senftenberg, Faculty of Health Sciences, Senftenberg, Germany.

Muscle stem cells (MuSCs) lose a large proportion of their characteristics when removed from their niche, hampering the analysis of muscle stem cell functionality. However, the isolation and culture of single floating myofibers with their adjacent muscle stem cells allow the short-term culture and manipulation of muscle stem cells in conditions as close as possible to the endogenous niche. Here, the isolation, culture and transfection with siRNA of muscle stem cells on their adjacent myofibers from young as well as old mice are described.

View Article and Find Full Text PDF

Skeletal Muscle Stem Cells and the Microenvironment Regulation in Sarcopenia:A Review.

Zhongguo Yi Xue Ke Xue Yuan Xue Bao

December 2024

Health and Medical Department, PUMC Hospital,CAMS and PUMC,Beijing 100730,China.

Sarcopenia is an age-related degenerative skeletal muscle disorder characterized by the loss of skeletal muscle mass and function during aging.Sarcopenia can impair the elderly's ability to perform daily activities and is associated with high risks of falls,fractures,and hospitalization.It seriously affects the quality of life of the elderly and becomes one of the major health problems in the aging society.

View Article and Find Full Text PDF

Injured or atrophied adult skeletal muscles are regenerated through terminal differentiation of satellite cells to form multinucleated muscle fibers. Transplantation of satellite cells or cultured myoblasts has been used to improve skeletal muscle regeneration. Some of the limitations observed result from the limited number of available satellite cells that can be harvested and the efficiency of fusion of cultured myoblasts with mature muscle fibers (i.

View Article and Find Full Text PDF

: Cultivated meat, an alternative to conventional meat, has substantial potential for alleviating environmental and ethical concerns. This method of manufacturing meat involves the isolation of skeletal muscle satellite cells (SMSCs) from donor animals, after which they proliferate in vitro and differentiate into primitive muscle fibers. The aim of this research was to evaluate how the insulin-like growth factor 1 (IGF1) gene regulates the myogenic differentiation of bovine skeletal muscle satellite cells (bSMSCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!