We show that light pulses propagating in two-photon absorbing systems may present time delays like slow light produced via coherent population oscillations in one-photon interactions. Two regimes are numerically studied for a simplified two-level system: (a) a light pulse at frequency ω/2 undergoes two-photon absorption (TPA) and is delayed by the absorbing system (two-photon slow light) and (b) a light pulse at frequency ω is delayed in a system prepared by TPA of a light pulse at frequency ω/2 (two-photon-assisted slow light). The study carried out in solutions of dyes and dendrites shows significant delays, low distortion, and good transmission for easily reachable experimental conditions. The working principle can be applied to other media and can be used in telecommunications technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.36.000639 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!