Even though it is known for more than one decade that antigen-encoding RNA can deliver antigenic information to induce antigen-specific immunity against cancer, the nature and mechanism of RNA uptake have remained enigmatic. In this study, we investigated the pharmacokinetics of naked RNA administered into the lymph node. We observed that RNA is rapidly and selectively uptaken by lymph node dendritic cells (DCs). Furthermore, in vitro and in vivo studies revealed that the efficient internalization of RNA by human and murine DCs is primarily driven by macropinocytosis. Selective inhibition of macropinocytosis by compounds or as a consequence of DC maturation abrogated RNA internalization and delivery of encoded antigens. Our findings imply that bioavailability of recombinant RNA vaccines in vivo highly depends on the density and the maturation stage of DCs at the administration site and are of importance for the design of RNA-based clinical immunotherapy protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1038/gt.2011.17DOI Listing

Publication Analysis

Top Keywords

rna
8
dendritic cells
8
driven macropinocytosis
8
lymph node
8
selective uptake
4
uptake naked
4
naked vaccine
4
vaccine rna
4
rna dendritic
4
cells driven
4

Similar Publications

Exploring the Ascorbate Requirement of the 2-Oxoglutarate-Dependent Dioxygenases.

J Med Chem

January 2025

Ma̅tai Ha̅ora - Centre for Redox Biology and Medicine, Department of Biomedical Science and Pathology, University of Otago, Christchurch, Christchurch 8140, New Zealand.

In humans, the 2-oxoglutarate-dependent dioxygenases (2-OGDDs) catalyze hydroxylation reactions involved in cell metabolism, the biosynthesis of small molecules, DNA and RNA demethylation, the hypoxic response and the formation of collagen. The reaction is catalyzed by a highly oxidizing ferryl-oxo species produced when the active site non-heme iron engages molecular oxygen. Enzyme activity is specifically stimulated by l-ascorbic acid (ascorbate, vitamin C), an effect not well mimicked by other reducing agents.

View Article and Find Full Text PDF

A major challenge in the field of synthetic motors relates to mimicking the precise, motion of biological motor proteins, which mediates processes such as cargo transport, cell locomotion, and cell division. To address this challenge, we developed a system to control the motion of DNA-based synthetic motors using light. DNA motors are composed of a central chassis particle modified with DNA "legs" that hybridize to RNA "fuel", and move upon enzymatic consumption of RNA.

View Article and Find Full Text PDF

METTL3 is the RNA methyltransferase predominantly responsible for the addition of N-methyladenosine (mA), the most abundant modification to mRNA. The prevalence of mA and the activity and expression of METTL3 have been linked to the appearance and progression of acute myeloid leukemia (AML), thereby making METTL3 an attractive target for cancer therapeutics. We report herein the discovery and optimization of small-molecule inhibitors of METTL3, culminating in the selection of as an proof-of-concept compound.

View Article and Find Full Text PDF

The ionizable lipid component of lipid nanoparticle (LNP) formulations is essential for mRNA delivery by facilitating endosomal escape. Conventionally, these lipids are synthesized through complex, multistep chemical processes that are both time-consuming and require significant engineering. Furthermore, the development of new ionizable lipids is hindered by a limited understanding of the structure-activity relationships essential for effective mRNA delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!