Immunosuppressive therapy is frequently associated with hypercholesterolemia, calling for lipid-lowering treatment without adverse drug interactions. One option is treatment with the cholesterol absorption inhibitor ezetimibe. We have shown in vitro that ezetimibe and tacrolimus may interact in competition for intestinal UGT1A1 and ABCB1 at concentrations reached in gut lumen after oral administration. However, this clinical study in healthy volunteers showed that the expected pharmacokinetic interaction between ezetimibe and tacrolimus is not of clinical relevance.

Download full-text PDF

Source
http://dx.doi.org/10.1038/clpt.2011.4DOI Listing

Publication Analysis

Top Keywords

drug interactions
8
cholesterol absorption
8
absorption inhibitor
8
inhibitor ezetimibe
8
healthy volunteers
8
ezetimibe tacrolimus
8
interactions immunosuppressant
4
immunosuppressant tacrolimus
4
tacrolimus cholesterol
4
ezetimibe
4

Similar Publications

The Significance of Mono- and Dual-Effective Agents in the Development of New Antifungal Strategies.

Chem Biol Drug Des

January 2025

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkiye.

Invasive fungal infections (IFIs) pose significant challenges in clinical settings, particularly due to their high morbidity and mortality rates. The rising incidence of these infections, coupled with increasing antifungal resistance, underscores the urgent need for novel therapeutic strategies. Current antifungal drugs target the fungal cell membrane, cell wall, or intracellular components, but resistance mechanisms such as altered drug-target interactions, enhanced efflux, and adaptive cellular responses have diminished their efficacy.

View Article and Find Full Text PDF

The farnesoid X receptor (FXR) regulates key physiological processes, such as bile acid homeostasis and lipid metabolism, making it an important target for drug discovery. However, the overactivation of FXR often leads to adverse effects. This study presents the development of a novel fluorescent probe utilizing the computer-aided drug design (CADD) approach to optimize linkers between more potent warhead and FITC fluorescent groups.

View Article and Find Full Text PDF

Disassembly of Virus-Like Particles and the Stabilizing Role of the Nucleic Acid Cargo.

J Phys Chem B

January 2025

Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.

In many simple viruses and virus-like particles, the protein capsid self-assembles around a nucleic-acid genome. Although the assembly process has been studied in detail, relatively little is known about how the capsid disassembles, a potentially important step for infection (in viruses) or cargo delivery (in virus-like particles). We investigate capsid disassembly using a coarse-grained molecular dynamics model of a = 1 dodecahedral capsid and an RNA-like polymer.

View Article and Find Full Text PDF

Plants respond to attacks by insects by releasing herbivore-induced plant volatiles (HIPVs), which are known to influence the behavior of natural enemies, conspecific and heterospecific insects. However, little is known about how HIPVs induced by one insect species influence the behavior of an allospecific insect species, particularly if these insects belong to different feeding guilds. Here, using the interaction of two co-occurring insects with different feeding guilds - Bemisia tabaci (a sap sucking insect) and Tuta absoluta (a leaf mining insect) - on potato plants, we report that T.

View Article and Find Full Text PDF

Bacteriophages infect gram-negative bacteria by attaching to molecules present on the bacterial surface, often lipopolysaccharides (LPS). Modification of LPS can lead to resistance to phage infection. In addition, LPS modifications can impact antibiotic susceptibility, allowing for phage-antibiotic synergism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!