During the 1930s, white matter tracts began to assume relevance for neurosurgery, especially after Cajal's work. In many reviews of white matter neurobiology, the seminal contributions of Josef Klingler (1888-1963) and their neurological applications have been overlooked. In 1934 at the University of Basel under Eugen Ludwig, Klingler developed a new method of dissection based on a freezing technique for brain tissue that eloquently revealed the white matter tracts. Klingler worked with anatomists, surgeons, and other scientists, and his models and dissections of white matter tracts remain arguably the most elegant ever created. He stressed 3-dimensional anatomic relationships and laid the foundation for defining mesial temporal, limbic, insular, and thalamic fiber and functional relationships and contributed to the potential of stereotactic neurosurgery. Around 1947, Klingler was part of a Swiss-German group that independently performed the first stereotactic thalamotomies, basing their targeting and logic on Klingler's white matter studies, describing various applications of stereotaxy and showing Klingler's work integrated into a craniocerebral topographic system for targeting with external localization of eloquent brain structures and stimulation of deep thalamic nuclei. Klingler's work has received renewed interest because it is applicable for correlating the results of the fiber-mapping paradigms from diffusion tensor imaging to actual anatomic evidence. Although others have described white matter tracts, none have had as much practical impact on neuroscience as Klinger's work. More importantly, Josef Klingler was an encouraging mentor, influencing neurosurgeons, neuroscientists, and brain imaging for more than three quarters of a century.

Download full-text PDF

Source
http://dx.doi.org/10.1227/NEU.0b013e318214ab79DOI Listing

Publication Analysis

Top Keywords

white matter
28
matter tracts
20
josef klingler
8
klingler's work
8
white
7
matter
7
tracts
5
klingler
5
josef klingler's
4
klingler's models
4

Similar Publications

Essential Tremor (ET) is characterized by action tremor often associated with resting tremor (rET). Although previous studies have identified widespread brain white matter (WM) alterations in ET patients, differences between ET and rET have been less explored. In this study we employed differential tractography to investigate WM microstructural alterations in these tremor disorders.

View Article and Find Full Text PDF

Optimal brain function is shaped by a combination of global information integration, facilitated by long-range connections, and local processing, which relies on short-range connections and underlying biological factors. With aging, anatomical connectivity undergoes significant deterioration, which affects the brain's overall function. Despite the structural loss, previous research has shown that normative patterns of functions remain intact across the lifespan, defined as the compensatory mechanism of the aging brain.

View Article and Find Full Text PDF

Usefulness of Myelin Quantification Using Synthetic Magnetic Resonance Imaging for Predicting Outcomes in Patients With Acute Ischemic Stroke.

Stroke

January 2025

Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (M.T., T.N., S.A., H.M.).

Background: Synthetic magnetic resonance imaging (MRI) is an innovative MRI technology that enables the acquisition of multiple quantitative values, including T1 and T2 values, proton density, and myelin volume, in a single scan. Although the usefulness of myelin measurement with synthetic MRI has been reported for assessing several diseases, investigations in patients with stroke have not been reported. We aimed to explore the utility of myelin quantification using synthetic MRI in predicting outcomes in patients with acute ischemic stroke.

View Article and Find Full Text PDF

Inflammation is becoming increasingly recognised as a core feature of dementia with evidence indicating that its role may vary and adapt across different stages of the neurodegenerative process. This study aimed to investigate whether the associations of high-sensitivity C-reactive protein (hs-CRP) with neuropsychological performance (verbal memory, executive function, processing speed) and cerebral white matter hyperintensities (WMHs) differed between older adults with subjective cognitive decline (SCD;  = 179) and mild cognitive impairment (MCI;  = 286). Fasting serum hs-CRP concentrations were grouped into low (<1.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is one of the most common disabling central nervous system diseases affecting young adults. Magnetic resonance imaging (MRI) is an essential tool for diagnosing and following up multiple sclerosis. Over the years, many MRI techniques have been developed to improve the sensitivity of MS disease detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!