Evolutionary trees and the rise of modern primatology: the forgotten contribution of St. George Mivart.

J Anthropol Sci

Dipartimento di Biologia Evoluzionistica, Università degli studi di Firenze, Via del Proconsolo 12, 50122 Firenze, Italy.

Published: April 2012

The modern concept of the tree of life originated as a popular, iconic synthesis of the Darwinian evolutionary theory of descent by modification even if Darwin's own trees were hypothetical and abstract. It is generally thought that Ernst Haeckel in 1866 was the first to publish a true evolutionary tree which showed actual taxa. It is apparently forgotten that St. George Mivart beginning in 1865 made significant contributions to the development of evolutionary based trees of life which dealt with primate evolution, including human phylogeny. His trees were built on the most extensive sets of original data published up to that time, and were clearly articulated as working hypotheses. Mivart's trees were surprisingly modern for appearance and for content. Not only are most taxonomic names still in use today, but also many of the issues he raised are still under discussion in current scientific literature. The history of biology and especially that of primatology in the 19th century can benefit from a more thorough knowledge of how the image of the tree was used in scientific writings, especially after Darwin in the context of the theory of evolution by descent from common ancestors. A reappraisal of Mivart's scientific achievements is necessary to better establish the origins and the development not only of evolutionary trees but of modern primatology. The history of primatology, a discipline that is fundamental for investigating the place of humans in nature, would also benefit from a reappraisal of Mivart's role in Victorian biology.

Download full-text PDF

Source
http://dx.doi.org/10.4436/jass.89005DOI Listing

Publication Analysis

Top Keywords

evolutionary trees
8
modern primatology
8
george mivart
8
development evolutionary
8
reappraisal mivart's
8
evolutionary
5
trees
5
trees rise
4
modern
4
rise modern
4

Similar Publications

Stomata control plant water loss and photosynthetic carbon gain. Developing more generalized and accurate stomatal models is essential for earth system models and predicting responses under novel environmental conditions associated with global change. Plant optimality theories offer one promising approach, but most such theories assume that stomatal conductance maximizes photosynthetic net carbon assimilation subject to some cost or constraint of water.

View Article and Find Full Text PDF

Cancer phylogenetic inference using copy number alterations detected from DNA sequencing data.

Cancer Pathog Ther

January 2025

School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK.

Cancer is an evolutionary process involving the accumulation of diverse somatic mutations and clonal evolution over time. Phylogenetic inference from samples obtained from an individual patient offers a powerful approach to unraveling the intricate evolutionary history of cancer and provides insights that can inform cancer treatment. Somatic copy number alterations (CNAs) are important in cancer evolution and are often used as markers, alone or with other somatic mutations, for phylogenetic inferences, particularly in low-coverage DNA sequencing data.

View Article and Find Full Text PDF

Evolutionary sparse learning (ESL) uses a supervised machine learning approach, Least Absolute Shrinkage and Selection Operator (LASSO), to build models explaining the relationship between a hypothesis and the variation across genomic features (e.g., sites) in sequence alignments.

View Article and Find Full Text PDF

Chromosome-level de novo genome unveils the evolution of Gleditsia sinensis and thorns development.

Genomics

January 2025

State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, China. Electronic address:

Gleditsia sinensis Lam. (G. sinensis) as an important species within the Leguminosae family, has been utilized in Chinese medicine for centuries, and its thorns serve as a chief medicinal ingredient.

View Article and Find Full Text PDF

The species (Cuvier, 1829) is the only representative of the family Niphonidae and the genus , and its taxonomic history is complicated; it is still unclear in a phylogenetic sense. In this study, we report the complete mitochondrial genome of (OP391482), which was determined to be 16,503 bp long with biased A + T contents (53.8%) using next-generation technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!