Transposons are found in virtually all organisms and play fundamental roles in genome evolution. They can also acquire new functions in the host organism and some have been developed as incisive genetic tools for transformation and mutagenesis. The hAT transposon superfamily contains members from the plant and animal kingdoms, some of which are active when introduced into new host organisms. We have identified two new active hAT transposons, AeBuster1, from the mosquito Aedes aegypti and TcBuster from the red flour beetle Tribolium castaneum. Activity of both transposons is illustrated by excision and transposition assays performed in Drosophila melanogaster and Ae. aegypti and by in vitro strand transfer assays. These two active insect transposons are more closely related to the Buster sequences identified in humans than they are to the previously identified active hAT transposons, Ac, Tam3, Tol2, hobo, and Hermes. We therefore reexamined the structural and functional relationships of hAT and hAT-like transposase sequences extracted from genome databases and found that the hAT superfamily is divided into at least two families. This division is supported by a difference in target-site selections generated by active transposons of each family. We name these families the Ac and Buster families after the first identified transposon or transposon-like sequence in each. We find that the recently discovered SPIN transposons of mammals are located within the family of Buster elements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3120152PMC
http://dx.doi.org/10.1534/genetics.111.126813DOI Listing

Publication Analysis

Top Keywords

hat transposon
8
transposon superfamily
8
identified active
8
active hat
8
hat transposons
8
transposons
7
hat
6
active
5
phylogenetic functional
4
functional characterization
4

Similar Publications

The sustainability of maize cultivation would benefit tremendously from early sowing, but is hampered by low temperatures during early development in temperate climates. We show that allelic variation within the gene encoding subunit M of the NADH-dehydrogenase-like (NDH) complex (ndhm1) in a European maize landrace affects several quantitative traits that are relevant during early development in cold climates through NDH-mediated cyclic electron transport around photosystem I, a process crucial for photosynthesis and photoprotection. Beginning with a genome-wide association study for maximum potential quantum yield of photosystem II in dark-adapted leaves (Fv/Fm), we capitalized on the large phenotypic effects of a hAT transposon insertion in ndhm1 on multiple quantitative traits (early plant height [EPH], Fv/Fm, chlorophyll content, and cold tolerance) caused by the reduced protein levels of NDHM and associated NDH components.

View Article and Find Full Text PDF

The brown planthoppers (BPH, Nilaparvata lugens), white backed planthopper (WBPH, Sogatella furcifera) and small brown planthopper (SBPH, Laodelphax striatellus) are widely distributed rice insect pests, causing huge annual yield loss of rice production. Though these three planthoppers belong to the same family, Delphacidae of Hemiptera, their genome sizes (GS) are very different, ranging from 541 to 1088 Mb. To uncover the main factors driving GS changes of three planthoppers, we first estimated the GS of their ancestor Fulgoroidea, to be 794.

View Article and Find Full Text PDF

A transposon DNA/hAT-Ac insertion promotes the formation of yellow tepals in lotus (Nelumbo).

Int J Biol Macromol

December 2024

Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Sanya Research Institute of Nanjing Agricultural University, Sanya 572000, China. Electronic address:

Yellow tepal is a unique trait of the American lotus (Nelumbo lutea), and all yellow lotus cultivars in the market possess genetic material from the American lotus. However, the formation of yellow tepals in lotus and the genetic mechanism of their formation remain unclear. In this study, we identified a transposon DNA/hAT-Ac, located within the promoter region of an R2R3-MYB transcription factor, MYB12, by comparing the insertion patterns of transposons in the genomes of American and Asian lotus (Nelumbo nucifera).

View Article and Find Full Text PDF

Characterization of hAT DNA transposon superfamily in the genome of Neotropical fish Apareiodon sp.

Mol Genet Genomics

October 2024

Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. Dos Santos, 100, Curitiba, Paraná, 81531-990, Brazil.

Article Synopsis
  • - The study focuses on DNA transposons, specifically hAT transposable elements, in the fish species Apareiodon sp., uncovering their diversity and potential impact on genome evolution.
  • - Researchers found that hAT elements are abundant in Apareiodon sp., with numerous subgroups like Ac and Charlie, and some may possess functional transposases.
  • - The analysis revealed a varied presence of microsatellites and showed that hAT elements are scattered across chromosomes, with no specific role in differentiating W chromosome regions.
View Article and Find Full Text PDF

The external appearance of fruit commodities is an essential trait that has profound effects on consumer preferences. A natural melon variety, characterized by an uneven and patchy arrangement of dark green streaks and spots on the white-skinned rind, resembles shooting stars streaking across the sky; thus, this variety is called "Shooting Star" (SS). To investigate the mechanism underlying the SS melon rind pattern, we initially discovered that the variegated dark green color results from chlorophyll accumulation on the white skin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!