The superior olivary nucleus (SON) is the primary source of inhibition in the avian auditory brainstem. While much is known about the role of inhibition at the SON's target nuclei, little is known about how the SON itself processes auditory information or how inhibition modulates these properties. Additionally, the synaptic physiology of inhibitory inputs within the SON has not been described. We investigated these questions using in vivo and in vitro electrophysiological techniques in combination with immunohistochemistry in the chicken, an organism for which the auditory brainstem has otherwise been well characterized. We provide a thorough characterization of monaural response properties in the SON and the influence of inhibitory input in shaping these features. We found that the SON contains a heterogeneous mixture of response patterns to acoustic stimulation and that in most neurons these responses are modulated by both GABAergic and glycinergic inhibitory inputs. Interestingly, many SON neurons tuned to low frequencies have robust phase-locking capability and the precision of this phase locking is enhanced by inhibitory inputs. On the synaptic level, we found that evoked and spontaneous inhibitory postsynaptic currents (IPSCs) within the SON are also mediated by both GABAergic and glycinergic inhibition in all neurons tested. Analysis of spontaneous IPSCs suggests that most SON cells receive a mixture of both purely GABAergic terminals, as well as terminals from which GABA and glycine are coreleased. Evidence for glycinergic signaling within the SON is a novel result that has important implications for understanding inhibitory function in the auditory brainstem.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3094186 | PMC |
http://dx.doi.org/10.1152/jn.01088.2010 | DOI Listing |
Pain
December 2024
Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
The mesopontine tegmental anesthesia area (MPTA) is a focal brainstem locus which, when exposed to GABAergic agents, induces brain-state transitioning from wakefulness to unconsciousness. Correspondingly, MPTA lesions render animals relatively insensitive to GABAergic anesthetics delivered systemically. Using chemogenetics, we recently identified a neuronal subpopulation within the MPTA whose excitation induces this same pro-anesthetic effect.
View Article and Find Full Text PDFbioRxiv
November 2024
Section of Developmental Biology, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA, 80445.
Neurobiol Dis
December 2024
Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy; IRCCS Neuromed Institute, Via Atinense 18, 86077 Pozzilli, (IS), Italy. Electronic address:
J Physiol
November 2024
Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
A key feature of the receptive field of neurons in the visual system is their centre-surround antagonism, whereby the centre and the surround exhibit responses of opposite polarity. This organization is thought to enhance visual acuity, but whether and how such antagonism plays a role in more complex processing remains poorly understood. Here, we investigate the role of centre and surround receptive fields in retinal direction selectivity by exposing posterior-preferring On-Off direction-selective ganglion cells (pDSGCs) to adaptive light and recording their response to globally moving objects.
View Article and Find Full Text PDFPain
October 2024
Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!