Thermodynamic examination of the pyrophosphate sensor helix in the thiamine pyrophosphate riboswitch.

RNA

Department of Chemistry and Biochemistry, the Colorado College, Colorado Springs, Colorado 80903, USA.

Published: April 2011

Riboswitches are functional mRNA that control gene expression. Thiamine pyrophosphate (TPP) binds to thi-box riboswitch RNA and allosterically inhibits genes that code for proteins involved in the biosynthesis and transport of thiamine. Thiamine binding to the pyrimidine sensor helix and pyrophosphate binding to the pyrophosphate sensor helix cause changes in RNA conformation that regulate gene expression. Here we examine the thermodynamic properties of the internal loop of the pyrophosphate binding domain by comparing the wild-type construct (RNA WT) with six modified 2 x 2 bulged RNA and one 2 x 2 bulged DNA. The wild-type construct retains five conserved bases of the pyrophosphate sensor domain, two of which are in the 2 x 2 bulge (C65 and G66). The RNA WT construct was among the most stable (ΔG°₃₇ = -7.7 kcal/mol) in 1 M KCl at pH 7.5. Breaking the A•G mismatch of the bulge decreases the stability of the construct ~0.5-1 kcal/mol, but does not affect magnesium binding to the RNA WT. Guanine at position 48 is important for RNA-Mg²+ interactions of the TPP-binding riboswitch at pH 7.5. In the presence of 9.5 mM magnesium at pH 5.5, the bulged RNA constructs gained an average of 1.1 kcal/mol relative to 1 M salt. Formation of a single A+•C mismatch base pair contributes about 0.5 kcal/mol at pH 5.5, whereas two tandem A+•C mismatch base pairs together contribute about 2 kcal/mol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062181PMC
http://dx.doi.org/10.1261/rna.2263211DOI Listing

Publication Analysis

Top Keywords

pyrophosphate sensor
12
sensor helix
12
thiamine pyrophosphate
8
gene expression
8
pyrophosphate binding
8
wild-type construct
8
bulged rna
8
a+•c mismatch
8
mismatch base
8
pyrophosphate
7

Similar Publications

We introduce two water-soluble excited state intramolecular proton transfer (ESIPT) based fluorescent turn-on probes responding to inorganic polyphosphates. These ESIPT probes enable specific detection of short-chain inorganic polyphosphates over a range of different condensed phosphates. The probes are weakly emissive in their off-state due to the blocking of ESIPT by Cu coordination.

View Article and Find Full Text PDF

Gold Nanoparticles Decorated CoAl LDH Monolayer: A Peroxidase-Like Nanozyme for Sensitive Colorimetric Detection of Acetylcholinesterase and Inhibitors.

Inorg Chem

December 2024

Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.

Monitoring acetylcholinesterase (AChE) activity and its inhibitor is crucial yet challenging for the early diagnosis and treatment of neurological diseases. In this study, we present Au nanoparticle decorated CoAl layered double hydroxide monolayer (Au@CoAl-LDH-m) as a peroxidase-like (POD) nanozyme for the sensitive colorimetric detection of AChE and its inhibitor, thiamine pyrophosphate (TPP). Remarkably, the Au@CoAl-LDH-m nanozyme can catalyze the oxidation of chromogenic substrates through its POD-like activity, which is effectively inhibited by thiocholine (TCh, a catalytic product of AChE), thereby enabling detection of AChE and TPP through a visible colorimetric readout.

View Article and Find Full Text PDF

A dual-mode sensing platform for electron spin resonance and UV-vis detection of alkaline phosphatase based on Cu-based metal-organic frameworks.

Anal Methods

December 2024

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, PR China.

Alkaline phosphatase (ALP) is an indispensable hydrolase in living organisms and the abnormality of ALP activity is correlated with a variety of diseases. Exploring ALP activity is important for clinical diagnosis and biomedical research to understand its physiological function. In this study, a dual-mode biosensing platform was constructed based on Cu-based metal-organic frameworks (Cu-MOFs) for electron spin resonance (ESR) and ultraviolet-visible (UV-vis) sensing of ALP.

View Article and Find Full Text PDF

Opportunity for genome engineering to enhance phosphate homeostasis in crops.

Physiol Mol Biol Plants

July 2024

Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia.

Plants maintain cellular homeostasis of phosphate (Pi) through an integrated response pathway regulated by different families of transcription factors including MYB, WRKY, BHLH, and ZFP. The systemic response to Pi limitation showed the critical role played by inositol pyrophosphate (PP-InsPs) as signaling molecule and SPX (SYG1/PHO81/XPR1) domain proteins as sensor of cellular Pi status. Binding of SPX to PP-InsPs regulates the transcriptional activity of the MYB-CC proteins, phosphate starvation response factors (PHR/PHL) as the central regulator of Pi-deficiency response in plants.

View Article and Find Full Text PDF

The residues of organophosphorus pesticides (OPs) are increasing environmental pollution and public health concerns. Thus, the development of simple, convenient and sensitive method for detection of OPs is crucial. Herein, a multifunctional Fe-based MOF with fluorescence, catalytic and adsorption, is synthesized by a simple one-pot hydrothermal method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!