Experiments were performed to determine if obstructive jaundice promotes the translocation of bacteria from the gastrointestinal tract to visceral organs. Three groups of mice were studied: control (n = 20), sham ligated (n = 28), and bile duct ligated (n = 33). The sham-ligated group underwent laparotomy and manipulation of the portal region, whereas the ligated group had their common bile ducts ligated. Seven days later, the mice were killed, their organs cultured, and the gastrointestinal tract examined histologically. The bilirubin levels of the ligated group (18.7 mg/dL) were elevated compared with the other groups (0.5 mg/dL) (p less than 0.05). The incidence of bacterial translocation was higher in the ligated (33%) than in the control (5%) or sham-ligated (7%) groups (p less than 0.05). Since bile is important in binding endotoxin and maintaining a normal intestinal microflora, cecal bacterial populations were quantitated. The cecal levels of gram-negative, enteric bacilli were 100-fold higher in the bile duct-ligated mice in which bacterial translocation occurred (p less than 0.05), indicating that intestinal bacterial overgrowth was a major factor responsible for bacterial translocation. The mucosal appearance of the intestines from the control and sham-ligated groups was normal. In contrast, subepithelial edema involving the ileal villi was present in the ligated group. In conclusion, the absence of bile within the gastrointestinal tract allows intestinal overgrowth with enteric bacilli and the combination of bacterial overgrowth and mucosal injury appears to promote bacterial translocation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0002-9610(05)80610-5DOI Listing

Publication Analysis

Top Keywords

bacterial translocation
20
gastrointestinal tract
12
ligated group
12
obstructive jaundice
8
jaundice promotes
8
bacterial
8
control sham-ligated
8
sham-ligated groups
8
enteric bacilli
8
bacterial overgrowth
8

Similar Publications

Unlabelled: During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species.

View Article and Find Full Text PDF

Background And Aims: Protein tyrosine phosphatase non-receptor type 23 (PTPN23) regulates the internalization of growth factor receptors such as the epithelial growth factor receptor (EGFR). Given the crucial function of such receptors in intestinal epithelial cells (IECs), we assessed the involvement of PTPN23 in intestinal homeostasis and epithelial proliferation.

Methods: We generated mouse models with constitutive (PTPN23fl/flVilCre+/-) or inducible (PTPN23fl/flVilCreERT+/-) deletion of PTPN23 in IEC.

View Article and Find Full Text PDF

Introduction: Acute kidney injury (AKI) is a frequent complication of chronic liver disease (CLD) contributing to high morbidity and mortality worldwide. While liver transplantation (LT) has shown favorable outcomes, early identification and management of AKI is imperative for survival. This review aims to highlight the epidemiology, pathophysiology, management, and prognosis of AKI in CLD.

View Article and Find Full Text PDF

Aim: This study was dedicated to investigating the role of sulfur metabolic processes in sulfate-reducing bacteria in plant resistance to heavy metal contamination.

Methods And Results: We constructed sulfate-reducing bacterial communities based on the functional properties of sulfate-reducing strains, and then screened out the most effective sulfate-reducing bacterial community SYN1, that prevented Cd and Pb uptake in rice through hydroponic experiment. This community lowered Cd levels in the roots and upper roots by 36.

View Article and Find Full Text PDF

Our current understanding of protein folding is based predominantly on studies of small (<150 aa) proteins that refold reversibly from a chemically denatured state. As protein length increases, the competition between off-pathway misfolding and on-pathway folding likewise increases, creating a more complex energy landscape. Little is known about how intermediates populated during the folding of larger proteins affect navigation of this more complex landscape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!