We have previously shown that mice lateral superior olive (LSO) neurons exhibit a large hyperpolarization-activated current (I(h) ), and that hyperpolarization-activated cyclic-nucleotide-gated type 1 channels are present in both the soma and dendrites of these cells. Here we show that the dendritic I(h) in LSO neurons modulates the integration of multiple synaptic inputs. We tested the LSO neuron's ability to integrate synaptic inputs by evoking excitatory post-synaptic potentials (EPSPs) in conjunction with brief depolarizing current pulses (to simulate a second excitatory input) at different time delays. We compared LSO neurons with the native I(h) present in both the soma and dendrites (control) with LSO neurons without I(h) (blocked with ZD7288) and with LSO neurons with I(h) only present peri-somatically (ZD7288+ computer-simulated I(h) using a dynamic clamp). LSO neurons without I(h) had a wider time window for firing in response to inputs with short time separations. Simulated somatic I(h) (dynamic clamp) could not reverse this effect. Blocking I(h) also increased the summation of EPSPs elicited at both proximal and distal dendritic regions, and dramatically altered the integration of EPSPs and inhibitory post-synaptic potentials. The addition of simulated peri-somatic I(h) could not abolish a ZD7288-induced increase of responsiveness to widely separated excitatory inputs. Using a compartmental LSO model, we show that dendritic I(h) can reduce EPSP integration by locally decreasing the input resistance. Our results suggest a significant role for dendritic I(h) in LSO neurons, where the activation/deactivation of I(h) can alter the LSO response to synaptic inputs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2011.07627.xDOI Listing

Publication Analysis

Top Keywords

lso neurons
28
synaptic inputs
12
lso
10
lateral superior
8
superior olive
8
soma dendrites
8
dendritic lso
8
post-synaptic potentials
8
dynamic clamp
8
neurons
7

Similar Publications

When processing lucuma (), waste such as shells and seeds is generated, which is a source of bioactive compounds. Recently, lucuma seed (LS), especially its oily fraction, has been studied for containing phytosterols and tocopherols, powerful antioxidants with health benefits. This study proposes lucuma seed oil (LSO) extraction using supercritical fluid (SCF) to improve the quality of the extract and minimize the environmental impact.

View Article and Find Full Text PDF

Loss of C1q alters the auditory brainstem response.

Front Cell Neurosci

October 2024

Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, United States.

Neural circuits in the auditory brainstem compute interaural time and intensity differences used to determine the locations of sound sources. These circuits display features that are specialized for these functions. The projection from the ventral cochlear nucleus (VCN) to the medial nucleus of the trapezoid (MNTB) body travels along highly myelinated fibers and terminates in the calyx of Held.

View Article and Find Full Text PDF

Auditory space has been conceptualized as a matrix of systematically arranged combinations of binaural disparity cues that arise in the superior olivary complex (SOC). The computational code for interaural time and intensity differences utilizes excitatory and inhibitory projections that converge in the inferior colliculus (IC). The challenge is to determine the neural circuits underlying this convergence and to model how the binaural cues encode location.

View Article and Find Full Text PDF

Based on the auditory periphery and the small head size, Etruscan shrews (Suncus etruscus) approximate ancestral mammalian conditions. The auditory brainstem in this insectivore has not been investigated. Using labelling techniques, we assessed the structures of their superior olivary complex (SOC) and the nuclei of the lateral lemniscus (NLL).

View Article and Find Full Text PDF

Neurons of the lateral superior olive (LSO) in the auditory brainstem play a fundamental role in binaural sound localization. Previous theoretical studies developed various types of neuronal models to study the physiological functions of the LSO. These models were usually tuned to a small set of physiological data with specific aims in mind.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!