In the present work, 3D CAD scaffolds for tissue engineering applications were developed starting from methacrylamide-modified gelatin (GelMOD) using two-photon polymerization (2PP). The scaffolds were cross-linked employing the biocompatible photoinitiator Irgacure 2959. Because gelatin is derived from collagen (i.e., the main constituent of the ECM), the developed materials mimic the cellular microenvironment from a chemical point of view. In addition, by applying the 2PP technique, structural properties of the cellular microenvironment can also be mimicked. Furthermore, in vitro degradation assays indicated that the enzymatic degradation capability of gelatin is preserved for the methacrylamide-modified derivative. An in depth morphological analysis of the 2PP-fabricated scaffolds demonstrated that the parameters of the CAD model are reproduced with great precision, including the ridge-like surface topography on the order of 1.5 μm. The developed scaffolds showed an excellent stability in culture medium. In a final part of the present work, the suitability of the developed scaffolds for tissue engineering applications was verified. The results indicated that the applied materials are suitable to support porcine mesenchymal stem cell adhesion and subsequent proliferation. Upon applying osteogenic stimulation, the seeded cells differentiated into the anticipated lineage. Energy dispersive X-ray (EDX) analysis showed the induced calcification of the scaffolds. The results clearly indicate that 2PP is capable of manufacturing precisely constructed 3D tissue engineering scaffolds using photosensitive polymers as starting material.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm1015305DOI Listing

Publication Analysis

Top Keywords

tissue engineering
16
scaffolds
8
cad scaffolds
8
scaffolds photosensitive
8
scaffolds tissue
8
engineering applications
8
cellular microenvironment
8
developed scaffolds
8
laser fabrication
4
fabrication three-dimensional
4

Similar Publications

Background: Bioinformatics analysis of hepatocellular carcinoma (HCC) expression profiles can aid in understanding its molecular mechanisms and identifying new targets for diagnosis and treatment.

Aim: In this study, we analyzed expression profile datasets and miRNA expression profiles related to HCC from the GEO using R software to detect differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs).

Methods And Results: Common DEGs were identified, and a PPI network was constructed using the STRING database and Cytoscape software to identify hub genes.

View Article and Find Full Text PDF

Regulation of T Cell Glycosylation by MXene/β-TCP Nanocomposite for Enhanced Mandibular Bone Regeneration.

Adv Healthc Mater

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.

View Article and Find Full Text PDF

Among contributors to diffusible signaling are portal systems which join two capillary beds through connecting veins. Portal systems allow diffusible signals to be transported in high concentrations directly from one capillary bed to the other without dilution in the systemic circulation. Two portal systems have been identified in the brain.

View Article and Find Full Text PDF

Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.

View Article and Find Full Text PDF

3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering.

ACS Appl Bio Mater

January 2025

Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.

Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!