Infrared spectra (4000 to 400 cm(-1)) of the gas and variable temperature xenon solutions, and the Raman spectrum of the liquid have been recorded for cyclopropylisocyanate. The enthalpy difference has been determined to be 77 ± 8 cm(-1) (0.92 ± 0.10 kJ/mol) with the trans form more stable than the cis conformer with 59 ± 2% present at ambient temperature. By utilizing three rotational constants for each conformer, combined with structural parameters predicted from MP2(full)/6-311+G(d,p) calculations, the adjusted r(0) parameters have been obtained. Heavy atom structural parameters for the trans [cis] conformers are the following: distances (Å) (C-C(2,3)) = 1.509(3) [1.509(3)], (C(2)-C(3)) = 1.523(3) [1.521(3)], (C-N) = 1.412(3) [1.411(3)], (N═C) =1.214(3) [1.212(3)], (C═O) = 1.163(3) [1.164(3)]; angles (°) ∠CCN = 116.7(5) [120.1(5)], ∠CNC = 136.3(5) [137.6(5)]. The centrifugal distortion constants have been predicted from ab initio and DFT calculations and are compared to the experimentally determined values.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp108879uDOI Listing

Publication Analysis

Top Keywords

structural parameters
12
variable temperature
8
infrared spectra
8
xenon solutions
8
conformational stability
4
stability variable
4
temperature infrared
4
spectra xenon
4
solutions structural
4
parameters
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!