Semiconductor nanocrystals, namely, quantum dots (QDs), present a set of unique photoluminescence properties, which has led to increased interest in using them as advantageous alternatives to conventional organic dyes. Many applications of QDs involve surface modification to enhance the solubility or biocompatibility of the QDs. One of the least exploited properties of QDs is the very long photoluminescence lifetime that usually has complex kinetics owing to the effect of quantum confinement. Herein, we describe the effect of different surface modifications on the photoluminescence decay kinetics of QDs. The different surface modifications were carefully chosen to provide lipophilic or water-soluble QDs with either positive or negative surface net charges. We also survey the effect on the QD lifetime of several ligands that interact with the QD surface, such as organic chromophores or fluorescent proteins. The results obtained demonstrate that time-resolved fluorescence is a useful tool for QD-based sensing to set the basis for the development of time-resolved-based nanosensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201000935 | DOI Listing |
Sci Rep
January 2025
College of Mining, Guizhou University, Guiyang, 550025, Guizhou, China.
Acid fracturing fluids can effectively improve the microporous structure of coal, thereby enhancing the permeability of coal seam and the efficiency of gas drainage. To explore the effects of acid fracturing fluids on the pore structure modification of coal samples from different coal ranks, hydrochloric acid-based acid fracturing fluids were prepared and used to soak four types of medium to high-rank coal in an experiment. High-pressure mercury intrusion and liquid nitrogen adsorption techniques results demonstrated that the acid fracturing fluid can effectively alter the pore structure of coal.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Departamento de Química, Federal University of Santa Catarina, Roberto Sampaio Gonzaga Street, 88040-380 Florianópolis, Brazil.
Polyamide (PA) has notable physical and chemical properties and is one of the most versatile synthetic materials in the industrial sector. However, its hydrophobicity creates significant challenges in its beneficiation and modification. Modifications of PA with chitosan nanoparticles (CNPs) can improve its undesired properties but are rarely found in the literature due to the weak interaction between the chemical groups of both structures.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.
Substantial amounts of oily wastewater are inevitably generated during petroleum extraction and petrochemical production, and the effective treatment of these O/W emulsions is crucial for environmental protection and resource recovery. The development of an environmentally friendly, cost-effective, and efficient demulsifier that operates effectively at low concentrations remains a significant challenge. This study introduces an eco-friendly ionic liquid demulsifier, Cotton Cellulose-Dodecylamine (CCDA), which demonstrates exceptional demulsification performance at low concentrations.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, Guangxi, China.
The unique structure of chitosan-based micelles can be loaded with essential oil, so it is significant to study the modification of chitosan and the interactions between chitosan and essential oil, while molecular dynamics (MD) simulation and density functional theory (DFT) provide a solution. In this study, three kinds of amphiphilic chitosan derivatives (CSDs) were constructed by grafting of different hydrophilic and hydrophobic groups. Amphiphilic chitosan micelles loaded with Chinese fir essential oil (CFEO) were prepared by self-assembly.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun 130033, China. Electronic address:
This study explored a novel modification method for porous polyetheretherketone (PEEK) implants using a biomimetic coating to achieve synergistic enhancement of vascularization and bone regeneration. Inspired by the natural extracellular matrix (ECM) structure (consists of growth factors and matrix proteins), a biomimetic dual-factor coating capable of releasing bone morphogenetic protein-2 (BMP-2) and fibronectin (FN) was coated on the surface of 3D-printed porous PEEK scaffolds using polydopamine (PDA) as a binder. Experiments conducted with MC3T3-E1 cells or HUVECs in co-culture with scaffolds revealed that the biomimetic coating not only synergically promoted cell migration, adhesion and proliferation, but also enhanced angiogenesis and osteogenic differentiation simultaneously in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!