Purpose: Long-term success of dental implants has been demonstrated when placed simultaneously with or after a sinus augmentation procedure. However, optimal bone formation can be from 6 to 9 months or longer with grafting materials other than autogenous bone. For this reason, there is interest in any surgical technique that does not require autogenous bone harvesting, yet results in sufficient bone formation within a relatively short time frame.
Materials And Methods: This study evaluated and compared bone formation following sinus-augmentation procedures using either an allograft cellular bone matrix (ACBM), containing native mesenchymal stem cells and osteoprogenitors, or conventional allograft (CA).
Results: Histomorphometric analysis of the ACBM grafts revealed average vital bone content of 32.5% ± 6.8% to residual graft content of 4.9% ± 2.4% for the 21 sinuses in the study, at an average healing period of 3.7 ± 0.6 months. Results for the CA, in the same time frame, were average vital bone content of 18.3% ± 10.6% to residual graft content of 25.8% ± 13.4%. A comparison of ACBM and CA grafts, for both vital and residual bone contents, showed P values of .003 and .002, respectively, indicating a statistically significant difference between the groups.
Conclusion: The high percentage of vital bone content, after a relatively short healing phase, may encourage a more rapid initiation of implant placement or restoration when a cellular grafting approach is considered.
Download full-text PDF |
Source |
---|
J Orthop Surg Res
January 2025
Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.
View Article and Find Full Text PDFBMC Musculoskelet Disord
January 2025
Department of Pediatric Orthopaedics, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Rd, Minhang District, Shanghai, 201102, China.
Purpose: Ollier's disease (multiple enchondromatosis) can cause severe lower limb length discrepancy and deformity in children. Osteotomy and limb lengthening with external fixation can correct the lower extremity deformity. There may be lesions in the osteotomy part (OP), and the internal fixation part of the external fixation(FP).
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
Bitter acids (BA) are main component of Humulus lupulus L. (hops). They are known for beer brewing and have various biological and pharmacological properties, especially the bone-protective effect confirmed by our previous in vivo study.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, the First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China.
Aims: Neuron death is caused primarily by apoptosis after spinal cord injury (SCI). Autophagy, as a cellular response, can maintain cellular homeostasis to reduce apoptosis. We aimed to investigate the effect and the mechanism of vimentin knockdown on autophagy and neural recovery after SCI.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China. Electronic address:
In this work, six bovine bone gelatin (type B) samples with varying molecular weight (MW) fractions, comprising α-chains, high- and low-MW fractions, were prepared using ethanol precipitation and pH adjustment. The influence of molecular weight distribution (MWD) on gelatin gel strength was examined, along with the effects of these different MW fractions on microbial transglutaminase (MTGase) cross-linking gelatin. The results showed that, without MTGase treatment, high-MW fractions acted as key fillers in the formation of gelatin gel networks, while α-chains and their aggregates played a central role.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!