Purpose: The purpose of this study was to compare zirconium oxide and titanium alloys with respect to their tendency to adhesion and colonization of two periodontal pathogens on both hard surfaces and on soft tissues in vivo.
Materials And Methods: The present study was designed as a prospective stratified randomized controlled clinical trial. Patients were scheduled to receive two implants with different types of abutments in the posterior mandible. Three months after implant placement, titanium and zirconium abutments were connected. Five weeks after abutment connections, the abutments were removed, probing depth measurements were recorded, and gingival biopsy samples were obtained. Abutments and biopsy specimens were analyzed by reverse-transcriptase polymerase chain reaction to compare the DNA copy numbers of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and total bacteria. The surface free energy of the abutments was calculated by sesile water drop before replacement.
Results: No statistically significant differences were found between probing depths or DNA copy numbers of A actinomycetemcomitans, P gingivalis, and total bacteria both for both titanium alloys and zirconium oxide surfaces and the biops specimens obtained from their buccal gingival. With respect to the surface free energy of zirconium and titanium abutments, zirconium abutments showed lower surface free energy than titanium abutments.
Conclusion: The results of this study showed that zirconium oxide surfaces have comparable properties to titanium alloy surfaces in their tendency to adhesion and colonization of two periodontal pathogens on both hard surfaces and in soft tissues.
Download full-text PDF |
Source |
---|
Clin Implant Dent Relat Res
February 2025
Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Introduction: Implantology has become a primary solution for tooth loss due to excellent osseointegration and high long-term success rates. However, complications such as abutment screw loosening, especially in implant-supported single crowns, compromise prosthesis longevity. Anaerobic adhesives (AAs) have shown promise in mechanical fields for preventing screw loosening, but their effectiveness in dental implants, particularly zirconia, remains uncertain.
View Article and Find Full Text PDFEnviron Pollut
January 2025
College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong Province, China; State Key Laboratory of Mining Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China.
Red mud (RM), an iron oxide-rich solid waste, shows potential as a catalyst for selective catalytic reduction in denitrification processes. This study investigates the catalytic performance and mechanism of metal-modified RM in reducing NO from diesel vehicle exhaust. Acid-washed RM catalysts were impregnated with varying ratios of cerium (Ce) and zirconium (Zr).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, 641112, India; Functional Materials Laboratory, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, 641112, India. Electronic address:
The effectiveness and safety of nanomaterials (NMs) are essential for their use in healthcare. This study focuses on creating NPs with multifunctional antibacterial and anticancer properties to combat bacterial infections and cancer disease more effectively than traditional antibiotics. This study investigates the synthesis of ZrO and chitosan (ch) coated zirconium oxide nanoparticles (chZrO NPs) using Bougainvillea glabra (B.
View Article and Find Full Text PDFJ Patient Rep Outcomes
January 2025
Division of Oral Surgery and Orthodontics, Department of Dental Medicine and Oral Health, Medical University of Graz, Graz, Austria.
Purpose: Zirconia dental implants show excellent biocompatibility and tissue integration, low affinity for plaque, and favorable biomechanical properties. However, these objective measures do not adequately replicate the patient's perception. This systematic review evaluated the evidence on patient-reported outcome (PROs) in zirconia dental implant treatment.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
A novel electrochemical aptasensor based on bimetallic zirconium and copper oxides embedded within mesoporous carbon (denoted as ZrOCuO@mC) was constructed to detect miRNA. The porous ZrOCuO@mC was created through the pyrolysis of bimetallic zirconium/copper-based metal-organic framework (ZrCu-MOF). The substantial surface area and high porosity of ZrOCuO@mC nanocomposite along with its robust affinity toward aptamer strands, facilitated the effective anchoring of aptamer strands on the ZrOCuO@mC-modified electrode surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!