Chronic lead exposure induces hypertension and alters endothelial function. However, treatment with low lead concentrations was not yet explored. We analyzed the effects of 7 day exposure to low lead concentrations on endothelium-dependent responses. Wistar rats were treated with lead (1st dose 4 µg/100 g, subsequent dose 0.05 µg/100 g, i.m. to cover daily loss) or vehicle; blood levels attained at the end of treatment were 9.98 µg/dL. Lead treatment had the following effects: increase in systolic blood pressure (SBP); reduction of contractile response to phenylephrine (1 nM-100 µM) of aortic rings; unaffected relaxation induced by acetylcholine (0.1 nM-300 µM) or sodium nitroprusside (0.01 nM-0.3 µM). Endothelium removal, N(G)-nitro-L-arginine methyl ester (100 µM) and tetraethylammonium (2 mM) increased the response to phenylephrine in treated rats more than in untreated rats. Aminoguanidine (50 µM) increased but losartan (10 µM) and enalapril (10 µM) reduced the response to phenylephrine in treated rats. Lead treatment also increased aortic Na(+)/K(+)-ATPase functional activity, plasma angiotensin-converting enzyme (ACE) activity, protein expression of the Na(+)/K(+)-ATPase alpha-1 subunit, phosphorylated endothelial nitric oxide synthase (p-eNOS), and inducible nitric oxide synthase (iNOS). Our results suggest that on initial stages of lead exposure, increased SBP is caused by the increase in plasma ACE activity. This effect is accompanied by increased p-eNOS, iNOS protein expression and Na(+)/K(+)-ATPase functional activity. These factors might be a compensatory mechanism to the increase in SBP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045404PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017117PLOS

Publication Analysis

Top Keywords

lead exposure
12
response phenylephrine
12
low lead
8
lead concentrations
8
lead treatment
8
phenylephrine treated
8
treated rats
8
na+/k+-atpase functional
8
functional activity
8
ace activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!