Imatinib mesylate has shown remarkable efficacy in the treatment of patients in the chronic phase of chronic myeloid leukemia. However, despite an overall significant hematological and cytogenetic response, imatinib therapy may favor the emergence of drug-resistant clones, ultimately leading to relapse. Some imatinib resistance mechanisms had not been fully elucidated yet. In this study we used sensitive and resistant sublines from a Bcr-Abl positive cell line to investigate the putative involvement of telomerase in the promotion of imatinib resistance. We showed that sensitivity to imatinib can be partly restored in imatinib-resistant cells by targeting telomerase expression, either by the introduction of a dominant-negative form of the catalytic protein subunit of the telomerase (hTERT) or by the treatment with all-trans-retinoic acid, a clinically used drug. Furthermore, we showed that hTERT overexpression favors the development of imatinib resistance through both its antiapoptotic and telomere maintenance functions. Therefore, combining antitelomerase strategies to imatinib treatment at the beginning of the treatment should be promoted to reduce the risk of imatinib resistance development and increase the probability of eradicating the disease.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-10-0979DOI Listing

Publication Analysis

Top Keywords

imatinib resistance
20
imatinib
9
chronic myeloid
8
myeloid leukemia
8
resistance
5
htert promotes
4
promotes imatinib
4
resistance chronic
4
leukemia cells
4
cells therapeutic
4

Similar Publications

Identification of novel BCR::ABL1 kinase domain mutation in patients with chronic myeloid leukaemia and imatinib resistance.

Malays J Pathol

December 2024

National Institutes of Health, Institute for Medical Research, Cancer Research Centre, Haematology Unit, 40170 Shah Alam, Selangor, Malaysia.

Introduction: The emergence of mutations in the BCR::ABL1 kinase domain (KD) impairs imatinib mesylate (IM) binding capacity, thus contributing to IM resistance. Identification of these mutations is important for treatment decisions and precision medicine in chronic myeloid leukaemia (CML) patients. Our study aims to determine the frequency of BCR::ABL1 KD mutations in CML patients with IM resistance.

View Article and Find Full Text PDF

Background/aim: Myelodysplastic syndromes (MDSs) are clonal bone marrow disorders characterized by ineffective hematopoiesis. They are classified based on morphology and genetic alterations, with SF3B1 variants linked to favorable prognosis and MECOM rearrangements associated with poor outcomes. The combined effects of these alterations remain unclear.

View Article and Find Full Text PDF

Starting with imatinib, tyrosine kinase inhibitors (TKIs) have turned chronic myeloid leukemia (CML) from a lethal blood cancer into a chronic condition. As patients with access to advanced CML care have an almost normal life expectancy, there is a perception that CML is a problem of the past, and one should direct research resources elsewhere. However, a closer look at the current CML landscape reveals a more nuanced picture.

View Article and Find Full Text PDF

Targeting the insulin-like growth factor-1 receptor to overcome imatinib resistance in chronic myeloid leukemia.

Discov Oncol

December 2024

Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan.

Patients with chronic myeloid leukemia (CML) frequently develop resistance to tyrosine kinase inhibitors such as imatinib. In this study, we explored the role of the insulin-like growth factor 1 (IGF-1) signaling pathway in CML and imatinib resistance. An analysis of IGF-1 gene expression using public databases revealed elevated levels of insulin-like growth factor-binding proteins in patients with chronic-phase CML.

View Article and Find Full Text PDF

Background: Up to 65% of patients with chronic myeloid leukemia (CML) who are treated with imatinib do not achieve sustained deep molecular response, which is required to attempt treatment-free remission. Asciminib is the only approved BCR::ABL1 inhibitor that Specifically Targets the ABL Myristoyl Pocket. This unique mechanism of action allows asciminib to be combined with adenosine triphosphate-competitive tyrosine kinase inhibitors to prevent resistance and enhance efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!