Inflammation plays a role in the progression to cancer and it is linked to the presence of senescent cells. Ulcerative colitis (UC) is a chronic inflammatory disease that predisposes to colorectal cancer. Tumorigenesis in this setting is associated with telomere shortening that can be observed in the nondysplastic epithelium of UC patients with high-grade dysplasia (HGD) or cancer (UC progressors). We hypothesized that a preneoplastic field of inflammation, telomere shortening, and senescence underlies tumor progression in UC progressors. Multiple biopsies of varying histologic grade were collected along the colon of nine UC progressors and analyzed for telomere length, DNA damage, senescence, p53, p16, and chronic and acute inflammation. Twenty biopsies from four UC nonprogressors and twenty-one biopsies from control individuals without UC were also analyzed. Short telomeres and increased DNA damage, senescence, and infiltrating leukocytes were observed in biopsies located less than 10 cm from HGD or cancer. Low-grade dysplasia (LGD) had the shortest telomeres along with the highest levels of senescence and infiltrating leukocytes, whereas HGD biopsies showed the opposite pattern. The expression of p16 and p53 was low in nondysplastic biopsies but progressively increased in LGD and HGD. In addition, high levels of infiltrating leukocytes were associated with telomere shortening, senescence, and reduced p53 expression. These results suggest that dysplasia arises in a preneoplastic field of chronic inflammation, which leads to telomere shortening, DNA damage, and senescence. Our findings argue that senescence acts as a tumor suppressor mechanism that is abrogated during the transition from LGD to HGD in UC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077943 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-10-1966 | DOI Listing |
Cells
December 2024
Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
The aging process is a multifactorial biological phenomenon starting at birth and persisting throughout life, characterized by a decline in physiological functions and adaptability. This decline results in the diminished capacity of aging organisms to respond to environmental changes and stressors, leading to reduced efficiency in metabolic, immune, and hormonal functions. As behavioral flexibility wanes, older individuals face longer recovery times and increased vulnerability to diseases.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Surgical Sciences, CIR-Dental School, University of Turin, 10126 Turin, Italy.
Mesenchymal stem/stromal cells (MSCs) are involved in the maintenance and regeneration of a large variety of tissues due to their stemness and multi-lineage differentiation capability. Harnessing these advantageous features, a flurry of clinical trials have focused on MSCs to treat different pathologies, but only few protocols have received regulatory approval so far. Among the various causes hindering MSCs' efficacy is the emergence of cellular senescence, which has been correlated with specific characteristics, such as morphological and epigenetic alterations, DNA damage, ROS production, mitochondrial dysfunction, telomere shortening, non-coding RNAs, loss of proteostasis, and a peculiar senescence-associated secretory phenotype.
View Article and Find Full Text PDFBiomolecules
November 2024
Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
Chronic stress is associated with a higher risk for carcinogenesis as well as age-related diseases and immune dysfunction. There is evidence showing that psychological stress can contribute to premature immunosenescence. Therefore, the question arose whether chronic exposure to catecholamine could drive immune cells into senescence.
View Article and Find Full Text PDFTransplant Proc
January 2025
Respiratory Medicine Department, Lung Transplant Unit, Hospital Universitario 12 de Octubre, Madrid, Spain.
Shortened telomere length (STL) is associated with increased rates of interstitial lung diseases, malignancy, hematological disorders, and immunosuppressive treatment toxicities. In this single-center retrospective study, we aim to determine whether patients with interstitial lung diseases who have STL, as determined by quantitative PCR of buccal epithelial cells, exhibit worse post-transplant outcomes compared to recipients with normal telomere length. In our series of 26 patients, STL was associated with a higher incidence of chronic kidney disease following lung transplantation (100% vs 55%, P = .
View Article and Find Full Text PDFMol Ecol
January 2025
Department of Biology, Colorado State University, Fort Collins, Colorado, USA.
Genomic projections of (mal)adaptation under future climate change, known as genomic offset, faces limited application due to challenges in validating model predictions. Individuals inhabiting regions with high genomic offset are expected to experience increased levels of physiological stress as a result of climate change, but documenting such stress can be challenging in systems where experimental manipulations are not possible. One increasingly common method for documenting physiological costs associated with stress in individuals is to measure the relative length of telomeres-the repetitive regions on the caps of chromosomes that are known to shorten at faster rates in more adverse conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!