Microcystis aeruginosa (M. aeruginosa) is a cosmopolitan Gram-negative cyanobacterium that may contaminate freshwater by releasing toxins, such as lipopolysaccharide (LPS) during aquatic blooms, affecting environmental and human health. The putative toxic effects of cyanobacterial LPS on brain microglia, a glial cell type that constitutes the main leukocyte-dependent source of reactive oxygen species in the central nervous system, are presently unknown. We tested the hypothesis that in vitro concentration- and time-dependent exposure to M. aeruginosa LPS strain UTCC 299 would activate rat microglia and the concomitant generation of superoxide anion (O₂⁻). After a 17-h exposure of microglia to M.aeruginosa LPS, the following concentration-dependent responses were observed: 0.1-100 ng/ml M. aeruginosa LPS enhanced O₂⁻ generation, with limited inflammatory mediator generation; 1000-10,000 ng/ml M. aeruginosa LPS caused thromboxane B₂ (TXB₂), matrix metalloproteinase-9 (MMP-9), and macrophage inflammatory protein-2 (MIP-2/CXCL2) release, concurrent with maximal O₂⁻ generation; 100,000 ng/mL M. aeruginosa LPS deactivated O₂⁻ production but maintained elevated levels of TXB₂, MMP-9, tumor necrosis factor-α (TNF-α), interleukin 1-α (IL-1α), and interleukin-6 (IL-6), macrophage inflammatory protein 1α (MIP-1α/CCL3), and MIP-2/CXCL2, with concomitant lactic dehydrogenase release. Although M. aeruginosa LPS was consistently less potent than Escherichia coli LPS, with the exception of O₂⁻, TXB₂, and MCP-1/CCL2 generation, it was more efficacious because higher levels of MMP-9, TNF-α, IL-1α, IL-6, MIP-1α/CCL3, and MIP-2/CXCL2 were produced. Our in vitro studies suggest that one or more of the inflammatory mediators released during M. aeruginosa LPS stimulation of microglia may play a critical role in the subsequent ability of microglia to generate O₂⁻. To our knowledge, this is the first experimental evidence that LPS isolated from a M. aeruginosa strain, can activate brain microglia in vitro, as well as the release of O₂⁻, and other inflammatory mediators hypothesized to be involved in neuroinflammation and neurodegeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfr045DOI Listing

Publication Analysis

Top Keywords

aeruginosa lps
24
ng/ml aeruginosa
12
lps
11
aeruginosa
10
microcystis aeruginosa
8
superoxide anion
8
thromboxane b₂
8
matrix metalloproteinase-9
8
rat microglia
8
brain microglia
8

Similar Publications

Chronic inflammation and heme-iron overload can result from bacterial hemolysis. Along with the synthetic drugs, numerous traditional and functional food approaches are equally trialed to eradicate the problem. As a prospective new source of dietary protein hydrolysates, freshwater mollusks () have recently drawn huge interest from researchers.

View Article and Find Full Text PDF

In the military, combat wound infections can progress rapidly to life-threatening sepsis. The discovery of effective small-molecule drugs to prevent and/or treat sepsis is a priority. To identify potential sepsis drug candidates, we used an optimized larval zebrafish model of endotoxicity/sepsis to screen commercial libraries of drugs approved by the U.

View Article and Find Full Text PDF

Discovery of a Pseudomonas aeruginosa-specific small molecule targeting outer membrane protein OprH-LPS interaction by a multiplexed screen.

Cell Chem Biol

December 2024

Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:

The surge of antimicrobial resistance threatens efficacy of current antibiotics, particularly against Pseudomonas aeruginosa, a highly resistant gram-negative pathogen. The asymmetric outer membrane (OM) of P. aeruginosa combined with its array of efflux pumps provide a barrier to xenobiotic accumulation, thus making antibiotic discovery challenging.

View Article and Find Full Text PDF

Unlabelled: Pyroptosis is an inflammatory immune response of eukaryotic cells to bacterial lipopolysaccharide (LPS) and other pathological stimuli, leading to the activation of the gasdermin D (GSDMD) and secretion of pore-forming domain GSDMD, facilitating the release of cytokines. Additionally, GSDMD exhibits antibacterial properties through interactions with bacterial outer membranes (OM). We explored alternative antimicrobial strategy to determine whether inducing natural pyroptosis via GSDMD activation by LPS could enhance the effectiveness of recombinant phage endopeptidase KP27 (peptidoglycan-degrading enzyme) against , enabling penetration through OM and bacterial killing synergistically.

View Article and Find Full Text PDF

Qingke Pingchuan granules alleviate airway inflammation in COPD exacerbation by inhibiting neutrophil extracellular traps in mice.

Phytomedicine

November 2024

Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China. Electronic address:

Background: Chronic obstructive pulmonary disease (COPD) imposes a significant global health and socioeconomic burden. Exacerbations of COPD (ECOPD), characterized by heightened airway inflammation and mucus hypersecretion, adversely affect patient health and accelerate disease progression. Qingke Pingchuan (QKPC) granules, a formulation from Traditional Chinese Medicine initially prescribed for acute bronchitis, have shown unexplored potential in ECOPD management, with mechanisms of action yet to be clarified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!