Melanoma cell lines and cells corresponding to premalignant melanocytes were established by our group after subjecting a nontumorigenic murine melanocyte lineage, melan-a, to sequential cycles of anchorage blockade. Previous results showed that in melan-a cells the superoxide level increases after such procedure. Superoxide production during melanocyte de-adhesion was inhibited by L-sepiapterin, the precursor of eNOS cofactor BH4, and increased by the inhibitor of BH4 synthesis, DAHP, hence indicating a partial uncoupling state of eNOS. The eNOS uncoupling seems to be maintained in cells derived from melan-a, because they present decreased nitric oxide and increased superoxide levels. The inhibition of superoxide production in Tm5 melanoma cells with L-sepiapterin reinforces their eNOS-uncoupled state. The maintenance of oxidative stress seems to be important in melanoma apoptosis resistance because Mn(III)TBAP, a superoxide scavenger, or L-sepiapterin renders Tm5 cells more sensitive to anoikis and chemotherapy. More importantly, eNOS uncoupling seems to play a pivotal role in melanocyte malignant transformation induced by sustained anchorage impediment, because no malignant transformation was observed when L-NAME-treated melanocytes were subjected to sequential cycles of de-adhesion. Our results show that uncoupled eNOS contributes to superoxide production during melanocyte anchorage impediment, contributing to anoikis resistance and malignant transformation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2011.02.022 | DOI Listing |
Hematol Oncol
March 2025
Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
This study compares the safety profiles of two Bruton's tyrosine kinase (BTK) inhibitors, Ibrutinib and Zanubrutinib, in patients with chronic lymphocytic leukemia (CLL). While Ibrutinib has transformed CLL treatment, it is associated with significant adverse events (AEs). Zanubrutinib, a second-generation BTK inhibitor, offers potential for improved safety.
View Article and Find Full Text PDFInt J Cancer
January 2025
Mechanisms of Genome Control, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Control of cell-type-specific gene activation requires the coordinated activity of distal regulatory elements, including enhancers, whose inputs must be temporally integrated. Dysregulation of this regulatory capacity, such as aberrant usage of enhancers, can result in malignant transformation of cells. In this review, we provide an overview of our current understanding of enhancer-driven gene regulation and discuss how this activity may be integrated across time, followed by epigenetic and structural alterations of enhancers in cancers.
View Article and Find Full Text PDFAm J Surg Pathol
January 2025
Department of Pathology.
Despite being designated as "noncarcinogenic" human papillomavirus (HPV) types, mono-infection with HPV6 or HPV11 has been found in squamous cell carcinomas (SCCs) at specific sites, including the larynx, penis, anus, and rarely, the lower female genital tract. The association between clinicopathologic features, viral status, and the carcinogenic mechanisms related to these low-risk HPVs remains unclear. The current study characterizes a series of low-risk HPV6 and HPV11-associated SCCs of the uterine cervix (6 cases) and vulva (2 cases).
View Article and Find Full Text PDFFront Immunol
January 2025
School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
Background: Immune checkpoint inhibitors (ICIs) have transformed oncological treatment by modulating immune responses against tumors. However, their efficacy is subject to inter-patient variability and is associated with immune-related adverse events (irAEs). The human gut microbiota, a complex microbial ecosystem, is increasingly implicated in modulating responses to ICIs.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
Background: The progression of bladder cancer (BC) from non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) significantly increases disease severity. Although the tumor microenvironment (TME) plays a pivotal role in this process, the heterogeneity of tumor cells and TME components remains underexplored.
Methods: We characterized the transcriptomes of single cells from 11 BC samples, including 4 NMIBC, 4 MIBC, and 3 adjacent normal tissues.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!