Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The p53 transcription factor is involved in cell cycle, apoptosis and differentiation. However, the mechanism of p53 mediated differentiation is not fully understood. Here, we show that recently discovered dual oxidase maturation factor 1 (DUOXA1), which was implicated in neuronal differentiation, is regulated by p53 and may be an important factor in neuronal differentiation. We show that DUOXA1 is highly expressed in mouse neuronal stem cells with intensive nuclear localization. A strong interaction between DUOXA1 and p53 is observed in undifferentiated cells and declines in terminally differentiated neurons. Overexpressed p53 induces marked DUOXA1 expression in P19 cells and intensifies neuronal differentiation in the presence of retinoic acid, which suggests that p53 and DUOXA1 possess a neural differentiation potential. At day 3 of retinoic acid induced differentiation when cells showed a typical morphology of neuronal progenies, CD133 expression was down-regulated. The expression level of CD133 was significantly decreased in p53 over-expressing cells and was accompanied by a substantial increase in the expression level of neurofilament. In conclusion, DUOXA1 is a novel p53-regulated neurogenic factor involved in p53 dependent neuronal differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2011.02.061 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!