We have reported previously that treatment of non-obese diabetic (NOD) mice with the invariant natural killer T (iNK T) cell agonist α-galactosylceramide C26:0 (α-GalCer) or its T helper type 2 (Th2)-biasing derivative α-GalCer C20:2 (C20:2) protects against type 1 diabetes (T1D), with C20:2 yielding greater protection. After an initial response to α-GalCer, iNK T cells become anergic upon restimulation. While such anergic iNK T cells can induce tolerogenic dendritic cells (DCs) that mediate protection from T1D, chronic administration of α-GalCer also results in long-lasting anergy accompanied by significantly reduced iNK T cell frequencies, which raises concerns about its long-term therapeutic use. In this study, our objective was to understand more clearly the roles of anergy and induction of tolerogenic DCs in iNK T cell-mediated protection from T1D and to circumvent potential complications associated with α-GalCer. We demonstrate that NOD iNK T cells activated during multi-dose (MD) treatment in vivo with C20:2 enter into and exit from anergy more rapidly than after activation by α-GalCer. Importantly, this shorter duration of iNK T cells in the anergic state promotes the more rapid induction of tolerogenic DCs and reduced iNK T cell death, and enables C20:2 stimulated iNK T cells to elicit enhanced protection from T1D. Our findings further that suggest C20:2 is a more effective therapeutic drug than α-GalCer for protection from T1D. Moreover, the characteristics of C20:2 provide a basis of selection of next-generation iNK T cell agonists for the prevention of T1D.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074214 | PMC |
http://dx.doi.org/10.1111/j.1365-2249.2011.04323.x | DOI Listing |
Biosystems
January 2025
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 3er Circuito Exterior s/n, Ciudad Universitaria, 04510, CdMx, México.
Lymphopoiesis is the generation of the T, B and NK cell lineages from a common lymphoid-biased haematopoietic stem cell. The experimental study of this process has generated a large amount of cellular and molecular data. As a result, there is a considerable number of mathematical and computational models regarding different aspects of lymphopoiesis.
View Article and Find Full Text PDFWaste Manag
January 2025
School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China. Electronic address:
Coal fly ash, a waste byproduct of coal-fired power plants rich in silica, is produced in vast quantities, exceeding 750 million tons annually. This abundance underscores the importance of finding sustainable and value-added applications for its reuse. Silver nanoparticle-silica composites represent a class of inorganically hybrid antimicrobial agents as the protection layer of cotton fabrics.
View Article and Find Full Text PDFBiofabrication
January 2025
Materials Science & Engineering, Stanford University, McCullough 246, 496 Lomita Mall, Stanford, California, 94305-6104, UNITED STATES.
Advances in biofabrication have enabled the generation of freeform perfusable networks mimicking vasculature. However, key challenges remain in the effective endothelialization of these complex, vascular-like networks, including cell uniformity, seeding efficiency, and the ability to pattern multiple cell types. To overcome these challenges, we present an integrated fabrication and endothelialization strategy to directly generate branched, endothelial cell-lined networks using a diffusion-based, embedded 3D bioprinting process.
View Article and Find Full Text PDFBMC Public Health
January 2025
Department of Epidemiology, Biostatistics, and Biodemography, Institute of Public Health, University of Southern Denmark, Odense, Denmark.
Background: We aim to study the potential association between tattoo ink exposure and development of certain types of cancers in the recently established Danish Twin Tattoo Cohort. Tattoo ink is known to transfer from skin to blood and accumulate in regional lymph nodes. We are concerned that tattoo ink induces inflammation at the deposit site, leading to chronic inflammation and increasing risk of abnormal cell proliferation, especially skin cancer and lymphoma.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, 613401, India.
Preservation and long-term storage of readily available cell-laden tissue-engineered products are major challenges in expanding their applications in healthcare. In recent years, there has been increasing interest in the development of off-the-shelf tissue-engineered products using the cryobioprinting approach. Here, bioinks are incorporated with cryoprotective agents (CPAs) to allow the fabrication of cryopreservable tissue constructs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!