We present a novel, hand-held microscope probe for acquiring confocal images of biological tissue. This probe generates images by scanning a fiber-lens combination with a miniature electromagnetic actuator, which allows it to be operated in resonant and nonresonant scanning modes. In the resonant scanning mode, a circular field of view with a diameter of 190 μm and an angular frequency of 127 Hz can be achieved. In the nonresonant scanning mode, a maximum field of view with a width of 69 μm can be achieved. The measured transverse and axial resolutions are 0.60 and 7.4 μm, respectively. Images of biological tissue acquired in the resonant mode are presented, which demonstrate its potential for real-time tissue differentiation. With an outer diameter of 3 mm, the microscope probe could be utilized to visualize cellular microstructures in vivo across a broad range of minimally-invasive procedures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.3534781 | DOI Listing |
Sci Rep
December 2024
Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, CP 62209, México.
The article provides and discusses details of numerical proceeding for the expansion method to calculate energy positions and wave functions of the localized and resonant electronic states emerging in quantum well-type semiconductor nanostructures because of perturbation of confined states by the Coulomb potential of the hydrogenic impurity center. Effective mass approximation is used. Several excited both resonant and non-resonant states are calculated and classified for the case of a simple rectangular GaAs/AlGaAs quantum well.
View Article and Find Full Text PDFNanoscale
December 2024
Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, SP 13083-859, Brazil.
We use non-resonant Raman scattering to demonstrate a large enhancement of the effective refractive index experienced by Raman photons in a scattering medium comprising spatially-correlated photonic structures of core-shell TiO@Silica scatterers mixed with silica nanoparticles and suspended in ethanol. We show that the high refractive index extends outside the physical boundary of the medium, which is attributed to the evanescent contributions of electromagnetic modes that are strongly localized within the medium. Notably, the effective enhancement can be observed even at very low intensities of Raman emission.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Infochemistry Scientific Center, ITMO University, Lomonosova Str. 9, 191002 St. Petersburg, Russia.
Heliyon
November 2024
Department of Physics & Astronomy, University College London, WC1E 6BT, London, UK.
We describe a new optical diagnostic for determining the composition of gases by measuring the motion of atoms and molecules trapped within very deep optical lattices. This non-resonant method is analogous to conventional Raman scattering, except that the observed spectral features relate to the oscillatory center-of-mass motion of each species within the lattice, determined uniquely by their respective polarizability-to-mass ratio. Depending on the density of the probed sample, detection occurs either via optical scattering at the high end or via non-resonant ionization at the lower end.
View Article and Find Full Text PDFPhotoacoustics
August 2024
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China.
Dual-comb photoacoustic spectroscopy (DC-PAS) advances spectral measurements by offering high-sensitivity and compact size in a wavelength-independent manner. Here, we present a novel cantilever-enhanced DC-PAS scheme, employing a high-sensitivity fiber-optic acoustic sensor based on an optical cantilever and a non-resonant photoacoustic cell (PAC) featuring a flat-response characteristic. The dual comb is down-converted to the audio frequency range, and the resulting multiheterodyne sound waves from the photoacoustic effect, are mapped into the response frequency region of the optical cantilever microphone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!