A new turbulent Taylor-Couette system consisting of two independently rotating cylinders has been constructed. The gap between the cylinders has a height of 0.927 m, an inner radius of 0.200 m, and a variable outer radius (from 0.279 to 0.220 m). The maximum angular rotation rates of the inner and outer cylinder are 20 and 10 Hz, respectively, resulting in Reynolds numbers up to 3.4 × 10(6) with water as working fluid. With this Taylor-Couette system, the parameter space (Re(i), Re(o), η) extends to (2.0 × 10(6), ±1.4 × 10(6), 0.716-0.909). The system is equipped with bubble injectors, temperature control, skin-friction drag sensors, and several local sensors for studying turbulent single-phase and two-phase flows. Inner cylinder load cells detect skin-friction drag via torque measurements. The clear acrylic outer cylinder allows the dynamics of the liquid flow and the dispersed phase (bubbles, particles, fibers, etc.) inside the gap to be investigated with specialized local sensors and nonintrusive optical imaging techniques. The system allows study of both Taylor-Couette flow in a high-Reynolds-number regime, and the mechanisms behind skin-friction drag alterations due to bubble injection, polymer injection, and surface hydrophobicity and roughness.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3548924DOI Listing

Publication Analysis

Top Keywords

skin-friction drag
12
turbulent taylor-couette
8
independently rotating
8
rotating cylinders
8
taylor-couette system
8
outer cylinder
8
local sensors
8
twente turbulent
4
taylor-couette
4
taylor-couette t3c
4

Similar Publications

Pile foundation structures are widely used in the construction of high-piled wharves in coastal soft soil areas due to their excellent adaptability to such environments. However, the extensive, deep backfilling involved in constructing these wharves can easily induce negative skin friction (NSF) on the piles, resulting in safety issues such as excessive settlement during the service life of the structures. This paper presents an indoor model experiment to examine the distribution of the THE NSF under varying pile-top loads and surcharge effects on single pile and double-sleeve pile foundations.

View Article and Find Full Text PDF

The Darcy-Forchheimer model is a commonly used and accurate method for simulating flow in porous media, proving beneficial for fluid separation, heat exchange, subsurface fluid transfer, filtration, and purification. The current study aims to describe heat and mass transfer in ternary nanofluid flow on a radially stretched sheet with activation energy. The velocity equation includes Darcy-Fochheimer porous media effects.

View Article and Find Full Text PDF

The current paper concerned with a non-linear convection flow of the Oldroyd-B nanofluid at a point of stagnation across a rotating sphere under the influence of convective heat and passive control conditions. The analysis of energy and concentration transition has been scrutinized based on the Cattaneo-Christov diffusion model. The formulated coupled mathematical problem involving boundary requirements can be alerted to a set of highly nonlinear ordinary differential equations by employing similarity analysis.

View Article and Find Full Text PDF

Non-Newtonian fluids have unique heat transfer properties compared to Newtonian fluids. The present study examines the flow of a Maxwell nanofluid across a rotating rough disk under the effect of a magnetic field. Furthermore, the Cattaneo-Christov heat flux model is adopted to explore heat transport features.

View Article and Find Full Text PDF

Numerical study of unsteady tangent hyperbolic fuzzy hybrid nanofluid over an exponentially stretching surface.

Sci Rep

September 2023

Applied Mathematical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.

The significance of fuzzy volume percentage on the unsteady flow of MHD tangent hyperbolic fuzzy hybrid nanofluid towards an exponentially stretched surface is scrutinized. The heat transport mechanism is classified by Joule heating, nonlinear thermal radiation, boundary slippage, and convective circumstances. Ethylene glycol (EG) as a host fluid along with the nanomaterial's Cu and [Formula: see text] are used for heat transfer analysis is also considered in this investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!