Far-field plasmonic resonance enhanced nanoparticle image velocimetry within a microchannel.

Rev Sci Instrum

Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA.

Published: February 2011

In this paper, a novel far-field plasmonic resonance enhanced nanoparticle-seeded particle image velocimetry has been demonstrated to measure the velocity profile in a microchannel. Chemically synthesized silver nanoparticles have been used to seed the flow in the microchannel. By using discrete dipole approximation, plasmonic resonance enhanced light scattering has been calculated for spherical silver nanoparticles with diameters ranging from 15 to 200 nm. Optimum scattering wavelength is specified for the nanoparticles in two media: water and air. The diffraction-limited plasmonic resonance enhanced images of silver nanoparticles at different diameters have been recorded and analyzed. By using standard particle image velocimetry techniques, the velocity profile within the microchannel has been determined from the images.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3555341DOI Listing

Publication Analysis

Top Keywords

plasmonic resonance
16
resonance enhanced
16
image velocimetry
12
silver nanoparticles
12
far-field plasmonic
8
particle image
8
velocity profile
8
profile microchannel
8
nanoparticles diameters
8
resonance
4

Similar Publications

Microvirin is a lectin molecule known to have monovalent interaction with glycoprotein gp120. A previously reported high-resolution structural analysis defines the mannobiose-binding cavity of Microvirin. Nonetheless, structure does not directly define the energetics of binding contributions of protein contact residues.

View Article and Find Full Text PDF

The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by (). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy.

View Article and Find Full Text PDF

Refractive index (RI) and temperature (T) are both critical environmental parameters for environmental monitoring, food production, and medical testing. The paper develops a D-shaped photonic crystal fiber (PCF) sensor to measure RI and T simultaneously. Its cross-sectional structure encompasses a hexagonal-hole lattice, with one hole selectively filled with toluene for temperature sensing.

View Article and Find Full Text PDF

Materials with Negative Permittivity or Negative Permeability-Review, Electrodynamic Modelling, and Applications.

Materials (Basel)

January 2025

Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.

A review of natural materials that exhibit negative permittivity or permeability, including gaseous plasma, metals, superconductors, and ferromagnetic materials, is presented. It is shown that samples made of such materials can store large amount of the electric (magnetic) energy and create plasmonic resonators for certain values of permittivity, permeability, and dimensions. The electric and the magnetic plasmon resonances in spherical samples made of such materials are analyzed using rigorous electrodynamic methods, and the results of the analysis are compared to experimental data and to results obtained with other methods.

View Article and Find Full Text PDF

The aim of this study was to investigate the inhibitory effect of nintedanib (BIBF) on glioblastoma (GBM) cells and its mechanism of action and to optimize a drug delivery strategy to overcome the limitations posed by the blood-brain barrier (BBB). We analyzed the inhibition of GBM cell lines following BIBF treatment and explored its effect on the autophagy pathway. The cytotoxicity of BIBF was assessed using the CCK-8 assay, and further techniques such as transmission electron microscopy, Western blotting (WB), and flow cytometry were employed to demonstrate that BIBF could block the autophagic pathway by inhibiting the fusion of autophagosomes and lysosomes, ultimately limiting the proliferation of GBM cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!