The capability of acousto-optic modulator (AOM) to perform time-gated measurements for laser ablation plasma spectroscopy has been examined. Especially, we focused on the capability of the "AOM gating" to exclude the continuum and extremely broadened spectra usually observed immediately after the laser ablation. Final goal of the use of the AOM is to achieve considerable downsizing of the system for in situ and on-site analyses. In the present paper, it is shown that narrow and clear spectral lines can be obtained with the AOM gating even if the target is submerged in water. Also, application of this technique to the targets in air is demonstrated. It has been revealed that the AOM gating is fast enough to exclude the continuum and broadened lines, while effectively acquiring sufficiently narrow atomic lines lasting slightly longer than the continuum.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3544021DOI Listing

Publication Analysis

Top Keywords

laser ablation
12
ablation plasma
8
acousto-optic modulator
8
exclude continuum
8
aom gating
8
emission spectroscopy
4
spectroscopy laser
4
plasma time
4
time gating
4
gating acousto-optic
4

Similar Publications

Synergistic photodynamic/photothermal therapy (PDT/PTT) can be used to target cancer cells by locally generating singlet oxygen species or increasing temperature under laser irradiation. This approach offers higher tumor ablation efficiency, lower therapeutic dose requirements, and reduced side effects compared to single treatment approaches. However, the therapeutic efficiency of PDT/PTT is still limited by the low oxygen levels within the solid tumors caused by abnormal vasculature and altered cancer cell metabolism.

View Article and Find Full Text PDF

Clinical study on low-energy semiconductor laser treatment in the promotion of wound healing after maxillofacial fracture surgery.

Hua Xi Kou Qiang Yi Xue Za Zhi

February 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine &Dept. of Trauma and Plastic Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.

Objectives: This study aims to evaluate the clinical effect of low-energy semiconductor laser treatment on the promotion of wound healing after maxillofacial fracture surgery.

Methods: A prospective randomized controlled study was conducted. Patients with maxillofacial fractures who were hospitalized in the Department of Trauma and Plastic Surgery, West China Hospital of Stomatology, Sichuan University, from August 2021 to June 2023 were selected as the study subjects and randomly divided into experimental and control groups.

View Article and Find Full Text PDF

This study aimed to identify risk factors for noninvasive ventilation (NIV) failure in <30 weeks' gestation preterm neonates and compare morbidity in patients with and without NIV failure. This study included preterm neonates <30 weeks' gestation who received NIV support for respiratory distress syndrome (RDS). Demographic and clinical characteristics were compared between infants with and without NIV failure within the first 72 hours after birth.

View Article and Find Full Text PDF

Colorectal cancer is the second leading cause of cancer-related deaths worldwide, and its development typically involves complex metabolic reprogramming. By mapping the spatial distributions of metabolites and -glycans in heterogeneous colorectal cancer tissues, we can elucidate cancer-associated metabolic and -glycan changes. Herein, we combine mass spectrometry imaging-based metabolomics and -glycomics to characterize the spatially resolved reprogramming of metabolites and -glycans in colorectal cancer tissues.

View Article and Find Full Text PDF

A novel remote deep ultraviolet laser ablation inlet connected to a dual electrospray ionization-atmospheric pressure chemical ionization (rDUVLAESCI) source is presented. This system allows for the simultaneous and spatial acquisition of mass spectrometry (MS) data for organic molecules with diverse polarities and molecular weights. Deep 193 nm UV laser ablation was used to sample analytes from dried spots for molecular MS analysis precisely.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!