Distortion-product otoacoustic emission (DPOAE) suppression data as a function of suppressor level (L(3)) for f(2) frequencies from 0.5 to 8 kHz and L(2) levels from 10 to 60 dB sensation level were used to construct suppression tuning curves (STCs). DPOAE levels in the presence of suppressors were converted into decrement versus L(3) functions, and the L(3) levels resulting in 3 dB decrements were derived by transformed linear regression. These L(3) levels were plotted as a function of f(3) to construct STCs. When f(3) is represented on an octave scale, STCs were similar in shape across f(2) frequency. These STCs were analyzed to provide estimates of gain (tip-to-tail difference) and tuning (Q(ERB)). Both gain and tuning decreased as L(2) increased, regardless of f(2), but the trend with f(2) was not monotonic. A roughly linear relation was observed between gain and tuning at each frequency, such that gain increased by 4-16 dB (mean ≈ 5 dB) for every unit increase in Q(ERB), although the pattern varied with frequency. These findings suggest consistent nonlinear processing across a wide frequency range in humans, although the nonlinear operation range is frequency dependent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3070996PMC
http://dx.doi.org/10.1121/1.3531864DOI Listing

Publication Analysis

Top Keywords

distortion-product otoacoustic
8
otoacoustic emission
8
suppression tuning
8
tuning curves
8
gain tuning
8
tuning
5
frequency
5
emission suppression
4
curves humans
4
humans distortion-product
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!