Acoustic field calculations in underwater environments are often uncertain because the environmental parameters required for such calculations are uncertain. This letter compares the accuracy of direct simulations, the field shifting approximation, and polynomial chaos expansions for predicting acoustic amplitude uncertainty in 100-m-deep Pekeris waveguides having spatially uniform uncertain water-column sound speed. When this sound speed is Gaussian-distributed with a standard deviation of 1 m/s, direct simulations and polynomial chaos expansions, based on 21 field calculations, are more accurate than the field shifting approximation, based on two field calculations. This ranking reverses as the sound-speed standard deviation increases to 20 m/s.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.3531814 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!