Li(8)ZrO(6) contains a high lithium content and may bear a great ability of CO(2) absorption, yet the reports about the properties of CO(2) absorption on Li(8)ZrO(6) are few to date for its difficulty in production. In this paper, high-purity Li(8)ZrO(6) is synthesized via a three-step calcination method combined with an effective lithium source and a suitable initial Li/Zr molar ratio. The produced Li(8)ZrO(6) possesses a great CO(2) absorption capacity of about 53.98 wt % at 998 K, which could be well-maintained in a wide range of CO(2) partial pressures of 0.1-1.0 bar although it decreased gradually during the multicycle process of CO(2) absorption-desorption in a 10% CO(2) feed stream because of the high working temperature. These properties imply that Li(8)ZrO(6) may be a new option for high-temperature CO(2) capture applied in industrial processes such as a steam methane reformer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic102035y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!