Prolonged morphine treatment induces extensive desensitization of the μ-opioid receptor (μOR) which is the G-protein-coupled receptor that primarily mediates the cellular response to morphine. To date, the molecular mechanism underlying this process is unknown. Here, we have used live cell fluorescence imaging to investigate whether prolonged morphine treatment affects the physical environment of μOR, or its coupling with G-proteins, in two neuronal cell lines. We find that chronic morphine treatment does not change the amount of enhanced yellow fluorescence protein (eYFP)-tagged μOR on the plasma membrane, and only slightly decreases its association with G-protein subunits. Additionally, morphine treatment does not have a detectable effect on the diffusion coefficient of eYFP-μOR. However, in the presence of another family member, the δ-opioid receptor (δOR), prolonged morphine exposure results in a significant increase in the diffusion rate of μOR. Number and brightness measurements suggest that μOR exists primarily as a dimer that will oligomerize with δOR into tetramers, and morphine promotes the dissociation of these tetramers. To provide a plausible structural context to these data, we used homology modeling techniques to generate putative configurations of μOR-δOR tetramers. Overall, our studies provide a possible rationale for morphine sensitivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071705PMC
http://dx.doi.org/10.1021/bi101701xDOI Listing

Publication Analysis

Top Keywords

morphine treatment
16
prolonged morphine
12
morphine
9
response morphine
8
μor
5
differential response
4
morphine oligomeric
4
oligomeric state
4
state μ-opioid
4
μ-opioid presence
4

Similar Publications

Excipient lung disease (ELD) is a rare cause of pulmonary hypertension that occurs due to the intravenous injection of crushed tablets. We present the case of a healthcare professional in her late 30s who presented with a fever in the setting of a bacteraemia. During her hospital admission, she established a pattern of transient hypoxia and hypotension, with resolution without targeted management or clear cause identified.

View Article and Find Full Text PDF

It is currently estimated that every 15 minutes an infant is born with opioid use disorder and undergoes intense early life trauma due to opioid withdrawal. Clinical research on the long-term consequences of gestational opioid exposure reports increased rates of social, conduct, and emotional disorders in these children. Here, we investigate the impact of perinatal opioid exposure (POE) on behaviors associated with anhedonia and stress in male and female Sprague Dawley rats.

View Article and Find Full Text PDF

C3/C3aR Bridges Spinal Astrocyte-Microglia Crosstalk and Accelerates Neuroinflammation in Morphine-Tolerant Rats.

CNS Neurosci Ther

January 2025

Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Aims: Communication within glial cells acts as a pivotal intermediary factor in modulating neuroimmune pathology. Meanwhile, an increasing awareness has emerged regarding the detrimental role of glial cells and neuroinflammation in morphine tolerance (MT). This study investigated the influence of crosstalk between astrocyte and microglia on the evolution of morphine tolerance.

View Article and Find Full Text PDF

The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance, which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation.

View Article and Find Full Text PDF

Chiral recognition of CIAC001 isomers in regulating pyruvate kinase M2 and mitigating neuroinflammation.

Eur J Med Chem

January 2025

Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China. Electronic address:

Article Synopsis
  • Chiral recognition is crucial for drug effectiveness, as seen in the CBD derivative CIAC001, which targets pyruvate kinase M2 (PKM2) and shows anti-neuroinflammatory and anti-addiction properties.
  • Four chiral isomers of CIAC001 were synthesized, and it was found that (7S)-(-)-CIAC001 had the strongest binding affinity and anti-inflammatory effects, significantly outperforming its (7R)-(-) counterpart.
  • Molecular dynamics simulations indicated that (7S)-(-)-CIAC001's strong interaction with the PKM2 subunit, specifically with phenylalanine at position 26 (F26), is vital for its therapeutic efficacy, emphasizing the importance of chiral recognition in
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!