Ab initio simulations and calculations were used to study the structures and stabilities of copper oxide clusters, Cu(n)O(n) (n = 1-8). The lowest energy structures of neutral and charged copper oxide clusters were determined using primarily the B3LYP/LANL2DZ model chemistry. For n ≥ 4, the clusters are nonplanar. Selected electronic properties including atomization energies, ionization energies, electron affinities, and Bader charges were calculated and examined as a function of n.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3070270 | PMC |
http://dx.doi.org/10.1021/jp104177q | DOI Listing |
J Phys Chem Lett
January 2025
Faculty of Chemistry, Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
The concept of natural densitals (NDs) and their amplitudes is introduced. These quantities provide the spectral decomposition of the cumulant of the two-electron density that, by definition, quantifies the extent of electron correlation. Consequently, they are ideally suited for a rigorous description of electron correlation effects in Coulombic systems.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.
Traditional machine learning methods face significant challenges in predicting the properties of highly symmetric molecules. In this study, we developed a machine learning model based on graph neural networks (GNNs) to accurately and swiftly predict the thermodynamic and photochemical properties of fullerenols, such as C(OH) ( = 1 to 30). First, we established a global method for generating fullerenol isomers through isomer fingerprinting, which can generate all possible isomers or produce diverse structural types on demand.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Türkiye.
Skin-like bioelectronics offer a transformative technological frontier, catering to continuous and real-time yet highly imperceptible and socially discreet digital healthcare. The key technological breakthrough enabling these innovations stems from advancements in novel material synthesis, with unparalleled possibilities such as conformability, miniature footprint, and elasticity. However, existing solutions still lack desirable properties like self-adhesivity, breathability, biodegradability, transparency, and fail to offer a streamlined and scalable fabrication process.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China.
Traditional window glazing, with inherently adverse energy-efficient optical properties, leads to colossal energy losses. Energy-saving glass requires a customized optical design for different climate zones. Compared with the widely researched radiative cooling technology which is preferable to be used in low-altitude hot regions; conversely in high-latitude cold regions, high solar transmittance (T) and low mid-infrared thermal emissivity (ε) are the key characteristics of high-performance radiative warming window glass, while the current low-emissivity (low-e) glass is far from ideal.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, PR China.
Lead halide perovskites have garnered interest in light-emitting diode (LED) applications due to their strong emission and tunable properties. However, conventional synthesis methods involve energy-intensive thermal processes and hazardous organic solvents, raising environmental concerns. In this study, we report a simple and eco-friendly mechanochemical approach that produces phase-pure blue-emitting CsCuI (emission at 440 nm) and yellow-emitting CsCuI (emission at 570 nm) phosphors through polarity modulation and control of grinding duration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!