Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Computerized detection of prostate cancer on T2-weighted MR images.
Methods: The authors combined fractal and multifractal features to perform textural analysis of the images. The fractal dimension was computed using the Variance method; the multifractal spectrum was estimated by an adaptation of a multifractional Brownian motion model. Voxels were labeled as tumor/nontumor via nonlinear supervised classification. Two classification algorithms were tested: Support vector machine (SVM) and AdaBoost.
Results: Experiments were performed on images from 17 patients. Ground truth was available from histological images. Detection and classification results (sensitivity, specificity) were (83%, 91%) and (85%, 93%) for SVM and AdaBoost, respectively.
Conclusions: Classification using the authors' model combining fractal and multifractal features was more accurate than classification using classical texture features (such as Haralick, wavelet, and Gabor filters). Moreover, the method was more robust against signal intensity variations. Although the method was only applied to T2 images, it could be extended to multispectral MR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.3521470 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!