Aiming at the seasonal drought in the dry land orchards of Longdong, Gansu Province, a sand-covering experiment was conducted with 15-year-old Nagafu No. 2 apple trees, with the soil water content, temperature, stem sap flow velocity, leaf stomatal conductance, and fruit quality measured. In the orchard covered with 5-cm-thick riversand, the increment of soil temperature in February-April was lower than 1 degrees C, while in June-July, it was 2.44 degrees C and 2.61 degrees C on sunny and cloudy days, respectively. The soil water content was over 60% of field capacity throughout the growing season. On sunny days with high soil water content (H season), the stem sap flow curve presented a wide peak. Under sand- covering, the sap flow started 0.6 h earlier, and the maximum sap flow velocity was 25.5% higher than the control. On cloudy days of H season, the maximum sap flow velocity was 165.6% higher than the control. On sunny days with low soil water content (L season), the sap flow curve had a single peak, and under sand covering, the sap flow started 0.5-1 h earlier than the control on sunny days. The maximum sap flow velocity was 794 g x h(-1). On cloudy days of L season, the sap flow started 1 h earlier, and the maximum sap flow velocity was 311.0% higher than the control. The evaporation of the control was 156.0% higher than that of sand-covering from March to July, suggesting that excessive ground water evaporation was the main reason to cause soil drought. Under sand-covering, single fruit mass was improved obviously whereas fruit firmness was reduced slightly, and soluble solids, vitamin C, total sugar, and organic acid contents were somewhat promoted.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sap flow
40
flow velocity
20
soil water
16
water content
16
maximum sap
16
cloudy days
12
sunny days
12
flow started
12
higher control
12
sap
10

Similar Publications

Linking sap flow and tree water deficit in an unmanaged, mixed beech forest during the summer drought 2022.

Plant Biol (Stuttg)

December 2024

Department of Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany.

Temperate mixed forests are currently experiencing severe drought conditions and face increased risk of degradation. However, it remains unclear how critical tree physiological functions such as sap flow density (SFD) and tree water deficit (TWD, defined as reversible stem shrinkage when water is depleted), respond to extreme environmental conditions and how they interact under dry conditions. We monitored SFD and TWD of three co-occurring European tree species (Fagus sylvatica, Fraxinus excelsior and Acer pseudoplatanus) in dry conditions, using high temporal resolution sap flow, dendrometer, and environmental measurements.

View Article and Find Full Text PDF

This study conducted a comparative analysis on the effects of smart automatic and semi-automatic irrigation methods on the physiological characteristics and growth of × Matsum. seedlings. The smart automatic irrigation system, which activates irrigation when the soil moisture drops below 15%, demonstrated superior characteristics in sap-wood area and bark ratio, as well as excellent water management efficiency, compared to the semi-automatic irrigation method, which involves watering (2.

View Article and Find Full Text PDF

Do trees use stemflow water? A manipulative experiment on Singleleaf piñon and Utah juniper in Great Basin woodlands.

Tree Physiol

December 2024

Department of Natural Resources and Environmental Science, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA.

It has been postulated that stemflow, precipitation that flows from plant crowns down along branches and stems to soils, benefits plants that generate it because it increases plant-available soil water near the base of the plant; however, little direct evidence supports this postulation. Were plants' crowns to preferentially route water to their roots, woody plants with large canopies could benefit. For example, piñon and juniper tree encroachment into sagebrush steppe ecosystems could be facilitated by intercepted precipitation routed to tree roots as stemflow, hypothetically reducing water available for shrubs and grasses.

View Article and Find Full Text PDF

Quantification of indocyanine-green-enhanced fluorescence with spectrophotometry (O2C®) in low anterior rectal resection: A prospective study.

Tech Coloproctol

December 2024

Department of Surgery, St. Marienkrankenhaus Siegen, Kampenstr. 51, 57072, Siegen, Germany.

Introduction: Despite spectacular visuals and the seemingly convincing rationale of using indocyanine-green-enhanced fluorescence in assessing bowel perfusion during colorectal resections, a lingering sense of subjectivity remains in the challenge of quantifying this fluorescence. This prospective study analyzed the application of O2C® spectrophotometry to quantify zones of fluorescence on the large bowel during low anterior resection.

Materials And Methods: Patients receiving a low anterior resection for cancer of the mid- and lower rectum were enrolled in this observational prospective study between February 2020 and December 2022.

View Article and Find Full Text PDF

Contrasting the soil-plant hydraulics of beech and spruce by linking root water uptake to transpiration dynamics.

Tree Physiol

December 2024

Dept. of Civil, Environmental and Geomatic Engineering ETH Zürich, Zürich, Switzerland.

Tree water status is mainly determined by the amount of water taken up from roots and lost through leaves by transpiration. Variations in transpiration and stomatal conductance, are often related to atmospheric conditions and leaf water potential. Yet, few experimental datasets exist, that enable relating leaf water potential and transpiration dynamics to temporal variation of root water uptake from different depths during soil drying.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!