With open top chamber (OTC), this paper studied the effects of simulated warming on the activities of soil invertase, urease, catalase, polyphenol oxidase in two contrasting subalpine coniferous forests (a dragon spruce plantation and a natural conifer forest) in west Sichuan. The dynamic changes of soil temperature and soil moisture were monitored synchronously. In the whole growth season, simulated warming enhanced the daily mean temperature at soil depth 5 cm by 0.61 degrees C in the plantation, and by 0.55 degrees C in the natural forest. Conversely, the volumetric moisture at soil depth 10 cm was declined by 4.10% and 2.55%, respectively. Simulated warming also increased soil invertase, urease, catalase, and polyphenol oxidase activities. The interactive effect of warming and forest type was significant on soil urease and catalase, but not significant on soil invertase and polyphenol oxidase. The warming effect on soil catalase depended, to some extent, on season change. In all treatments, the soil enzyme activities in the natural forest were significantly higher than those in the plantation. The seasonal changes of test soil enzyme activities were highly correlated with soil temperature, but less correlated with soil moisture. This study indicated that warming could enhance soil enzyme activities, and the effect had definite correlations with forest type, enzyme category, and season change. The soil enzyme activities in the subalpine coniferous forests were mainly controlled by soil temperature rather than soil moisture.

Download full-text PDF

Source

Publication Analysis

Top Keywords

soil enzyme
20
enzyme activities
20
soil
18
simulated warming
16
subalpine coniferous
12
coniferous forests
12
soil invertase
12
urease catalase
12
polyphenol oxidase
12
soil temperature
12

Similar Publications

The present research work is concerned with the production and optimization of the dopa-oxidase enzyme by using pre-grown mycelia of Aspergillus oryzae. Different strains of A. oryzae were collected and isolated from various soil samples.

View Article and Find Full Text PDF

Crop plants are severely affected by heavy metals (HMs), leading to food scarcity and economical loss. Lead (Pb) is outsourced by use of lead-based fertilizers, batteries, mining, smelting and metal processing. It significantly reduces growth, development and yield of crops cultivated on contaminated sites.

View Article and Find Full Text PDF

Salinity and lead are two important abiotic stresses that limit crop growth and yield. In this study, we assayed the effect of these stresses on tolerant and sensitive maize genotypes. Four-week-old maize plants were treated with 250 mM sodium chloride (NaCl) and 250 µM lead (Pb).

View Article and Find Full Text PDF

Polycyclic aromatic compounds and petroleum hydrocarbons (PHs) are hazardous pollutants and seriously threaten the environment and human health. However, native microbial communities can adapt to these toxic pollutants, utilize these compounds as a carbon source, and eventually evolve to degrade these toxic contaminants. With this in mind, we isolated 26 bacterial strains from various environmental soil samples.

View Article and Find Full Text PDF

The continuous exposure of chemical pesticides in agriculture, their contamination in soil and water pose serious threat to the environment. Current study used an approach to evaluate various pesticides like Hexaconazole, Mancozeb, Pretilachlor, Organophosphate and λ-cyhalothrin degradation capability of esterase. The enzyme was isolated from Salinicoccus roseus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!