AI Article Synopsis

Article Abstract

Hydrophobic cations with delocalized charge are used to deliver drugs to mitochondria. However, micromolar concentrations of such compounds could be toxic due to their excessive accumulation in mitochondria. We studied possible pathophysiological effects of one such cation, i.e. dodecyltriphenylphosphonium (C(12)-TPP), in the yeast Saccharomyces cerevisiae. First, we found that C(12)-TPP induces high-amplitude mitochondrial swelling. The swelling can be prevented by addition of protonophorous uncoupler FCCP or antioxidant alpha-tocopherol, but not other tested antioxidants (N-acetylcysteine and Trolox). Second, FCCP prevents ROS-sensitive fluorescent dye (dichlorofluorescein diacetate) staining of yeast treated with C(12)-TPP. We also showed that all tested antioxidants partially restore the growth inhibited by C(12)-TPP. The latter points that ROS rather than the mitochondria swelling limit the growth rate.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10863-011-9345-8DOI Listing

Publication Analysis

Top Keywords

tested antioxidants
8
accumulation dodecyltriphenylphosphonium
4
mitochondria
4
dodecyltriphenylphosphonium mitochondria
4
mitochondria induces
4
swelling
4
induces swelling
4
swelling ros-dependent
4
ros-dependent growth
4
growth inhibition
4

Similar Publications

Molecular Mechanism of N-Acetylcysteine Regulating Proliferation and Hormone Secretion of Granulosa Cells in Sheep.

Reprod Domest Anim

January 2025

Tianzhu County Animal Husbandry Technology Extension Station, Tianzhu, Gansu, China.

Granulosa cells (GCs) are pivotal in the development of ovarian follicles, serving not only as supportive cells but also as the primary producers of steroid hormones. The proliferation of these cells and the synthesis of steroid hormones are crucial for follicular development and atresia. In our study, GCs were isolated using follicular fluid aspiration and subsequently identified through immunofluorescence.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) are highly valued for their chemical stability, tunable size, and biocompatibility. Utilizing green chemistry, a microwave-assisted synthesis method was employed to produce water-soluble GQDs from Mangifera Indica leaf extract. This approach is efficient, cost-effective, and environmentally friendly, offering reduced reaction times, energy consumption, and uniform particle sizes, and has proven advantageous over other methods.

View Article and Find Full Text PDF

Occurrence and migration of synthetic phenolic antioxidants in food packaging materials: Effects of plastic types and storage temperature.

Sci Total Environ

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; School of Environment and Health, Jianghan University, Wuhan 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.

Synthetic phenolic antioxidants (SPAs) are widely used in food packaging materials to extend product shelf life. Not much attention has been paid to high molecular weight SPAs (HMW SPAs) so far, despite their potential health risks. In this study, we first analyzed the concentrations of ten HMW SPAs in food plastic packaging materials (including 6 plastic categories, n = 116).

View Article and Find Full Text PDF

Jaundice is an indication of hyperbilirubinemia and is caused by derangements in bilirubin metabolism. It is typically apparent when serum bilirubin levels exceed 3 mg/dL and can indicate serious underlying disease of the liver or biliary tract. A comprehensive medical history, review of systems, and physical examination are essential for differentiating potential causes such as alcoholic liver disease, biliary strictures, choledocholithiasis, drug-induced liver injury, hemolysis, or hepatitis.

View Article and Find Full Text PDF

Water pollution, oxidative stress and the emergence of multidrug-resistant bacterial strains are significant global threats that require urgent attention to protect human health. Nanocomposites that combine multiple metal oxides with carbon-based materials have garnered significant attention due to their synergistic physicochemical properties and versatile applications in both environmental and biomedical fields. In this context, the present study was aimed at synthesizing a ternary metal-oxide nanocomposite consisting of silver oxide, copper oxide, and zinc oxide (ACZ-NC), along with a multi-walled carbon nanotubes modified ternary metal-oxide nanocomposite (MWCNTs@ACZ-NC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!