Bone repair is a major concern in reconstructive surgery. Transplants containing osteogenically committed mesenchymal stem cells (MSCs) provide an alternative source to the currently used autologous bone transplants which have limited supply and require additional surgery to the patient. A major drawback, however is the lack of a critical mass of cells needed for successful transplantation. The purpose of the present study was to test the effects of FGF2 and FGF9 on expansion and differentiation of MSCs in order to establish an optimal culture protocol resulting in sufficient committed osteogenic cells required for successful in vivo transplantation. Bone marrow-derived MSCs cultured in αMEM medium supplemented with osteogenic supplements for up to three passages (control medium), were additionally treated with FGF2 and FGF9 in various combinations. Cultures were evaluated for viability, calcium deposition and in vivo osteogenic capacity by testing subcutaneous transplants in nude mice. FGF2 had a positive effect on the proliferative capacity of cultured MSCs compared to FGF9 and control medium treated cultures. Cultures treated with FGF2 followed by FGF9 showed an increased amount of extracted Alizarin red indicating greater osteogenic differentiation. Moreover, the osteogenic capacity of cultured cells transplanted in immunodeficient mice revealed that cells that were subjected to treatment with FGF2 in the first two passages and subsequently to FGF9 in the last passage only, were more successful in forming new bone. It is concluded that the protocol using FGF2 prior to FGF9 is beneficial to cell expansion and commitment, resulting in higher in vivo bone formation for successful bone tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11626-011-9390-y | DOI Listing |
Matrix Biol
January 2025
Department of Anatomy and Cell Biology, Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada; Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada. Electronic address:
Release of growth factors in the tissue microenvironment is a critical process in the repair and regeneration of periodontal tissues, regulating fibroblast behavior and phenotype. As a result of the complex architecture of the periodontium, distinct fibroblast populations in the periodontal ligament and gingival connective tissue exist in close proximity. Growth factor therapies for periodontal regeneration have gained traction, but quantification of their effects on multiple different fibroblast populations that are required for repair has been poorly investigated.
View Article and Find Full Text PDFASN Neuro
July 2024
Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut, USA.
The fifteen canonical paracrine fibroblast growth factors (FGFs) are organized in five subfamilies that interact with four FGF-receptors (FGFRs) and heparan sulfate proteoglycan (HSPG) co-receptors. Many of these FGFs are expressed in CNS regions where oligodendrocyte (OL) progenitors originate, migrate or differentiate. FGF2 (basic FGF) is considered a prototype FGF and the information about the effects of FGF signaling on OL-lineage cells has evolved largely from the study of FGF2.
View Article and Find Full Text PDFMil Med Res
June 2024
Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
Fibroblast growth factor (FGF) signaling encompasses a multitude of functions, including regulation of cell proliferation, differentiation, morphogenesis, and patterning. FGFs and their receptors (FGFR) are crucial for adult tissue repair processes. Aberrant FGF signal transduction is associated with various pathological conditions such as cartilage damage, bone loss, muscle reduction, and other core pathological changes observed in orthopedic degenerative diseases like osteoarthritis (OA), intervertebral disc degeneration (IVDD), osteoporosis (OP), and sarcopenia.
View Article and Find Full Text PDFCells
February 2024
Department of Dermatology, University of California, Davis School of Medicine, Sacramento, CA 95817, USA.
FGF9 is a potent mitogen and survival factor, but FGF9 protein levels are generally low and restricted to a few adult organs. Aberrant expression of FGF9 usually results in cancer. However, the mechanism of FGF9 action has not been fully established.
View Article and Find Full Text PDFFGF9 is a potent mitogen and survival factor, but FGF9 protein level is generally low and restricted to a few adult organs. Aberrant expression of FGF9 usually results in cancer. However, the mechanism of FGF9 action has not been fully established.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!