Transcription and replication of mitochondrial DNA (mtDNA) are regulated by nuclear DNA-encoded proteins that are targeted into mitochondria. A decrease in mtDNA copy number results in mitochondrial dysfunction, which may lead to insulin resistance and metabolic syndromes. We analyzed mitochondrial proteins that physically bind to human mitochondrial D-loop DNA using a shot-gun proteomics approach following protein enrichment by D-loop DNA-linked affinity chromatography. A total of 152 D-loop DNA binding proteins were identified by peptide sequencing using ultra high pressure capillary reverse-phase liquid chromatography/tandem mass spectrometry. Bioinformatic analysis showed that 68 were mitochondrial proteins, 96 were DNA/RNA/protein binding proteins and 114 proteins might form a complex via protein-protein interactions. Histone family members of H1, H2A, H2B, H3, and H4, were detected in abundance among them. In particular, histones H2A and H2B were present in the mitochondrial membrane as integral membrane proteins and not bound directly to mtDNA inside the organelle. Histones H1.2, H3 and H4 were associated with the outer mitochondrial membrane. Silencing of H2AX expression inhibited mitochondrial protein transport. Our data suggests that many mitochondrial proteins may reside in multiple subcellular compartments like H2AX and exert multiple functions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0mb00277aDOI Listing

Publication Analysis

Top Keywords

d-loop dna
12
binding proteins
12
mitochondrial proteins
12
mitochondrial
11
proteins
9
analysis mitochondrial
8
mitochondrial d-loop
8
dna binding
8
h2a h2b
8
mitochondrial membrane
8

Similar Publications

D-loop mutations in mitochondrial DNA are a risk factor for chemotherapy resistance in esophageal cancer.

Sci Rep

December 2024

Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.

Esophageal cancer is a highly aggressive disease, and acquired resistance to chemotherapy remains a significant hurdle in its treatment. mtDNA, crucial for cellular energy production, is prone to mutations at a higher rate than nuclear DNA. These mutations can accumulate and disrupt cellular function; however, mtDNA mutations induced by chemotherapy in esophageal cancer remain unexplored.

View Article and Find Full Text PDF

A recent study proposed a new genetic lineage of leatherback turtles (Dermochelys coriacea) based on genetic analysis, environmental history, and local ecological knowledge (LEK), suggesting the existence of two possible species or subspecies on the beaches of Oaxaca, diverging ~ 13.5 Mya. However, this hypothesis may be influenced by nuclear mitochondrial DNA segments (NUMTs), which could have been misamplified as true mtDNA.

View Article and Find Full Text PDF

Revealing long-range heterogeneous organization of nucleoproteins with N-methyladenine footprinting.

bioRxiv

December 2024

Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.

A major challenge in epigenetics is uncovering the dynamic distribution of nucleosomes and other DNA-binding proteins, which plays a crucial role in regulating cellular functions. Established approaches such as ATAC-seq, ChIP-seq, and CUT&RUN provide valuable insights but are limited by the ensemble nature of their data, masking the cellular and molecular heterogeneity that is often functionally significant. Recently, long-read sequencing technologies, particularly Single Molecule, Real-Time (SMRT/PacBio) sequencing, have introduced transformative capabilities, such as N-methyladenine (6mA) footprinting.

View Article and Find Full Text PDF

Upon infection with the virus, cells increase the expression of cytidine deaminase APOBEC3 family genes. This leads to the accumulation of C-to-T mutations in the replicating viral genome and suppresses viral propagation. In contrast, herpesviruses, including Epstein-Barr virus (EBV), express genes that counteract APOBEC3 during lytic infection.

View Article and Find Full Text PDF

Mitochondria play a pivotal role as carriers of genetic information through their circular DNA molecules. The rapid evolution of the D-loop region in mitochondria makes it an ideal molecular marker for exploring genetic differentiation among individuals within species and populations with close kinship. However, the influence of mtDNA D-loop region haplotypes and mtDNA copy numbers on phenotypic traits, particularly production traits in chickens, remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!