Transforming growth factor-beta increases the expression of vascular smooth muscle cell markers in human multi-lineage progenitor cells.

Med Sci Monit

Division of Vascular Surgery and Endovascular Therapy, Michael E DeBakey Department of Surgery, Baylor College of Medicine, Molecular Surgeon Research Center, Houston, TX, USA.

Published: February 2011

Background: Vascular smooth muscle cell (SMC) differentiation is an essential component of vascular repair and tissue engineering. However, currently used cell models for the study of SMC differentiation have several limitations. Multi-lineage progenitor cells (MLPCs) originate from human umbilical cord blood and are cloned from a single cell. The object of this study was to investigate whether MLPCs could differentiate into SMCs in vitro with induction by transforming growth factor beta1 (TGF-beta1).

Material/methods: MLPCs were treated without or with TGF-beta1 (1 and 5 ng/mL) in mesenchymal stem cell media plus 1% FBS for 7 days. Total RNA was isolated from the MLPCs, and semi-quantitative real-time PCR was performed to test the following mRNA levels: early and late phase SMC-specific markers, two endothelial cell (EC)-specific markers, endothelial progenitor cell (EPC) marker CD34, TGF-beta1 accessory protein CD105, and adhesion molecule CD146.

Results: TGF-beta1 (1 ng/mL) significantly increased the mRNA levels of SMC-specific markers SM22α, calponin-1, SM α-actin, caldesmon, tropomyosin and MLCK as well as adhesion molecule CD146. The mRNA levels of EC-specific markers VE-cadherin and VEGFR-2, EPC marker CD34 and TGF-beta1 accessory protein CD105 were decreased significantly, after MLPC were treated with TGF-beta1 (1 ng/mL). TGF-beta1 at 5 ng/mL showed similar effect on the expression of these genes.

Conclusions: This study demonstrates that in the presence of TGF-beta1, MLPCs undergo SMC lineage differentiation indicating that MLPCs are a promising cell model for SMC lineage differentiation studies, which may contribute to advances in vascular repair and tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276078PMC
http://dx.doi.org/10.12659/msm.881439DOI Listing

Publication Analysis

Top Keywords

tgf-beta1 ng/ml
16
mrna levels
12
transforming growth
8
vascular smooth
8
smooth muscle
8
cell
8
muscle cell
8
multi-lineage progenitor
8
progenitor cells
8
smc differentiation
8

Similar Publications

Objective: To study the relationship between FK506-binding protein 51 (FKBP51) and ovarian aging and/or diminished ovarian reserve (DOR) in human ovaries by comparing FKBP51 levels in granulosa (GC) and cumulus cells (CC), collected during controlled ovarian stimulation (COS) from women of advanced reproductive age and/or with a diagnosis of DOR with that of young women with normal ovarian reserve. To explore the association between increased FKBP51 expression and human ovarian aging further, expression of FKBP51 was compared in ovarian stroma of post-menopausal versus pre-menopausal women. Lastly, this relation was further queried by comparing ovarian expression of several collagen genes as markers of ovarian fibrosis in 14-month-old wild type (Fkbp5) and Fkbp5 knockout (Fkbp5) mice.

View Article and Find Full Text PDF

Background: The immunologic factors are the chief reason for recurrent pregnancy loss (RPL) and induction of maternal-fetal tolerance is the main treatment for this cause of RPL, but the effect of this method is uncertainly and needs multiple doses and/or interventions. The aim of this study was to investigate whether a single administration of transforming growth factor-β1 (TGF-β1) can improve the pregnancy outcomes of RPL mice and whether the improvement is cause by TGF-β1 driving the expression of immune tolerance molecule indoleamine 2,3-dioxygenase (IDO).

Materials And Methods: In this experimental study, 40 RPL model mice were equally divided into a control group, that received 0.

View Article and Find Full Text PDF

Kangfuxin solution alleviates esophageal stenosis after endoscopic submucosal dissection: A natural ingredient strategy.

World J Gastroenterol

January 2025

Department of Spleen and Stomach Diseases, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China.

Background: Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection (ESD). Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD.

Aim: To examine the effectiveness and underlying mechanism of Kangfuxin solution (KFX) in mitigating excessive fibrotic repair of the esophagus post-ESD.

View Article and Find Full Text PDF

Epigenetic modification regulates the ligamentum flavum hypertrophy through miR-335-3p/SERPINE2/β-catenin signaling pathway.

Cell Mol Biol Lett

January 2025

Department of Orthopaedics, Peking University Third Hospital, Peking University, No.49 NorthGarden Road, Haidian District, Beijing, 100191, Beijing, China.

Background: Epigenetic modifications have been proved to play important roles in the spinal degenerative diseases. As a type of noncoding RNA, the microRNA (miRNA) is a vital class of regulatory factor in the epigenetic modifications, while the role of miRNAs in the regulation of epigenetic modifications in ligamentum flavum hypertrophy (LFH) has not been fully investigated.

Methods: The miRNA sequencing analysis was used to explore the change of miRNA expression during the fibrosis of ligamentum flavum (LF) cells caused by the TGF-β1 (10 ng/ml).

View Article and Find Full Text PDF

Aim: There remain limited therapies to treat thyroid eye disease (TED) orbital fibrosis, highlighting the urgency to develop novel targets. Transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from orbital fibroblasts are important pathogenetic factor of TED. Endoplasmic reticulum (ER) stress may play a role in TED pathogenesis since it has been linked to liver, kidney, heart and lung fibrotic remodelling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!