Background: The oocyte-to-embryo transition (OET) requires a co-ordinated transcriptional programme acting through evolutionarily conserved events, and transcription factors (TFs) are known to control these processes. Here, we focus on nuclear factor (NF)-κB, a TF involved in several cellular processes, studying NFκB-inhibitor (NFKBIA) mRNA and its protein product, IκBα, during OET. NFKBIA and IκBα are part of a regulatory loop, as IκBα is the major down-regulator of NF-κB activation while NFKBIA transcription is activated by NF-κB.
Methods And Results: We found a dynamic correlation between NFKBIA transcript, expression of IκBα-protein and activation of NF-κB/p65 in bovine oocyte and embryo. During the transition from immature to in vitro matured bovine oocyte, we observed a decrease in maternal NFKBIA mRNA and a parallel increase of the IκBα-protein (both P < 0.05). In the embryo, NFKBIA neo-synthesis is activated as a consequence of embryo genome activation (EGA), and IκBα decreases. NF-κB/p65-binding activity was detectable at low levels in immature oocyte, disappeared in dormant metaphase II oocyte and was strong in the embryo, during embryonic NFKBIA synthesis. The level of NF-κB/p65 DNA binding correlates with the timing of meiotic silencing during bovine oocyte maturation and embryonic transcription reprogramming.
Conclusions: The IκBα/NF-κB circuit appears to be a tightly stage-controlled mechanism that could govern OET, being activated at EGA. Our findings represent the first characterization of NFKBIA and IκBα as maternal effectors in both the bovine oocyte and embryo. We suggest a role for NFKBIA as a marker of NF-κB/p65 activation in the human oocyte and early embryo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/humrep/der040 | DOI Listing |
Mol Reprod Dev
January 2025
Liv Hospital, Centre for Regenerative Medicine and Stem Cell Manufacturing (LivMedCell), İstanbul, Turkey.
In vitro maturation (IVM) is a form of assisted reproductive technology (ART) applied to obtain mature oocytes in culture. Decline in IVM success rates by age has led consideration of novel approaches based on cellular dynamics. Our aim was to achieve proteostasis in old bovine oocytes from 13 to 16-year-old bovine with a lower potential for fertilization.
View Article and Find Full Text PDFReprod Sci
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
Melatonin is mainly synthesized and secreted by pineal gland, and plays multiple functions, including its regulating effects on reproductive processes. Sperm capacitation is necessary for fertilization, but the effect of melatonin on mouse sperm capacitation remains to be elucidated. We thus investigated the roles of melatonin on capacitation by culturing the sperms from mouse cauda epididymis in the medium with different doses of melatonin.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
Optimizing oocyte maturation and embryo culture media could enhance in vitro embryo production. The purpose of the present study was to investigate the role of supplementing one carbon metabolism (OCM) substrates and its cofactors (Cystine, Zinc, Betaine, B2, B3, B6, B12 and 5-methyltetrahydrofolate) in maturation and/or embryo culture media on the rate of blastocyst formation and pregnancy outcomes following the transfer of the resulting blastocysts in bovines. In the first experiment, 2537 bovine oocytes were recovered from slaughterhouse ovaries and then matured either in conventional maturation medium (IVM) or IVM supplemented with OCM substrates (Sup-IVM).
View Article and Find Full Text PDFCell Death Discov
January 2025
Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
A limited number of female germ cells support reproduction in many mammals. The follicle, composed of oocytes and supporting granulosa cells, forms the basis of oogenesis. Crosstalk between oocytes and granulosa cells is essential for the formation, dormancy, re-awakening, and maturation of oocytes.
View Article and Find Full Text PDFBiol Reprod
January 2025
Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
The mammalian target of rapamycin (mTOR) signaling pathway is activated by luteinizing hormone in preovulatory follicle. However, its impact on ovulation remains inadequately explored. Utilizing in vivo studies and in vitro fertilization, we demonstrated that the negative effect of inhibition of mTOR signaling by rapamycin on oocyte quality during the ovulatory phase, with a notable decrease in the total cell count of blastocysts, a reduction in gastrula size, and fetal degeneration on the 16th day of gestation while not affecting ovulated oocyte count or granulosa cell luteinization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!