Ubiquitin-mediated protein degradation is necessary for both increased ventricular mass and survival signaling for compensated hypertrophy in pressure-overloaded (PO) myocardium. Another molecular keystone involved in the hypertrophic growth process is the mammalian target of rapamycin (mTOR), which forms two distinct functional complexes: mTORC1 that activates p70S6 kinase-1 to enhance protein synthesis and mTORC2 that activates Akt to promote cell survival. Independent studies in animal models show that rapamycin treatment that alters mTOR complexes also reduces hypertrophic growth and increases lifespan by an unknown mechanism. We tested whether the ubiquitin-mediated regulation of growth and survival in hypertrophic myocardium is linked to the mTOR pathway. For in vivo studies, right ventricle PO in rats was conducted by pulmonary artery banding; the normally loaded left ventricle served as an internal control. Rapamycin (0.75 mg/kg per day) or vehicle alone was administered intraperitoneally for 3 days or 2 wk. Immunoblot and immunofluorescence imaging showed that the level of ubiquitylated proteins in cardiomyocytes that increased following 48 h of PO was enhanced by rapamycin. Rapamycin pretreatment also significantly increased PO-induced Akt phosphorylation at S473, a finding confirmed in cardiomyocytes in vitro to be downstream of mTORC2. Analysis of prosurvival signaling in vivo showed that rapamycin increased PO-induced degradation of phosphorylated inhibitor of κB, enhanced expression of cellular inhibitor of apoptosis protein 1, and decreased active caspase-3. Long-term rapamycin treatment in 2-wk PO myocardium blunted hypertrophy, improved contractile function, and reduced caspase-3 and calpain activation. These data indicate potential cardioprotective benefits of rapamycin in PO hypertrophy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3094075 | PMC |
http://dx.doi.org/10.1152/ajpheart.00545.2010 | DOI Listing |
Allergol Immunopathol (Madr)
January 2025
Geriatric Department, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou City, Jiangsu Province, China;
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, airway obstruction, and lung damage, often triggered by cigarette smoke. Dysregulated autophagy and inflammation are key contributors to its progression. Although double-stranded RNA-binding protein Staufen homolog 1 (STAU1), a multifunctional protein primarily involved in mRNA transport and localization, is identified as a potential biomarker, its role in COPD pathogenesis remains unclear.
View Article and Find Full Text PDFBackground: Apolipoprotein ε4 allele (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (AD) with females having higher risk than males. Compared with non-carriers, cognitively normal, middle-aged APOE4 carriers have lower cerebral blood flow (CBF) decades before clinical symptoms appear. Early intervention to protect CBF would be critical for APOE4 carriers to mitigate AD progression.
View Article and Find Full Text PDFBackground: Apolipoprotein ε4 allele (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). Compared with non-carriers, cognitively normal APOE4 individuals have shown brain atrophy and lower cerebral blood flow (CBF) decades before AD pathological and clinical symptoms appear. The goal of the study is to determine if using Sirolimus, an FDA-approved mTOR inhibitor, could restore the brain volumes in structures related to cognitive functions and global CBF (gCBF) for asymptomatic APOE4 carriers compared with non-carriers.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institute for Neurodegenerative Diseases (IND) Florida, Boca Raton, FL, USA.
Background: Alzheimer's disease (AD), Dementia with Lewy Bodies (DLB), and other neurodegenerative diseases (NDD) develop over an extended preclinical period, sharing common risk factors and underlying pathophysiological mechanisms. Plasma proteins, including Amyloid-beta peptides (Aβ) and Tau isoforms, facilitate differential diagnosis of NDD in their earliest stages, allowing for timely delivery of targeted interventions. Blood-based biomarkers may also serve as a reliable means of monitoring disease progression and evaluating the effectiveness of individualized interventions across the spectrum of disease.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Miami Miller School of Medicine, Center for Therapeutic Innovation, Miami, FL, USA.
Background: Rapamycin is currently in clinical trials for AD, yet numerous studies have suggested that rapamycin inhibits mTORC2 as well as mTORC1, which could be detrimental for AD pathology. Brain insulin resistance is a known aspect of AD pathology and mTORC2 inhibition reduces AKT phosphorylation, which is a main mediator of cellular insulin signaling, perpetuating insulin resistance and further worsening brain glucose metabolism. Here, we show that rapamycin prevents insulin-induced AKT phosphorylation in human neurons and explore the differential effects of mTORC1 and mTORC2 on neuronal insulin sensitivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!