Pax5/B cell lineage specific activator protein (BSAP) is a B lineage-specific regulator that controls the B lineage-specific gene expression program and immunoglobulin gene V(H) to DJ(H) recombination. Despite extensive studies on its multiple functions, little is known about how the activity of Pax5 is regulated. Here, we show that co-expression of histone acetyltransferase E1A binding protein p300 dramatically enhances Pax5-mediated transcriptional activation. The p300-mediated enhancement is dependent on its intrinsic histone acetyltransferase activity. Moreover, p300 interacts with the C terminus of Pax5 and acetylates multiple lysine residues within the paired box DNA binding domain of Pax5. Mutations of lysine residues 67 and 87/89 to alanine within Pax5 abolish p300-mediated enhancement of Pax5-induced Luc-CD19 reporter expression in HEK293 cells and prevent Pax5 to activate endogenous Cd19 and Blnk expression in Pax5(-/-) murine pro B cells. These results uncover a novel level of regulation of Pax5 function by p300-mediated acetylation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077615 | PMC |
http://dx.doi.org/10.1074/jbc.M110.176289 | DOI Listing |
Cell Signal
January 2025
Department of Basic Medical Science & Department of Stomatology, School of Medicine, Xiamen University, Xiamen, Fujian, China. Electronic address:
Overexpression of integrin β6 (ITGB6) is crucially linked to the invasion and metastasis of head and neck squamous cell carcinoma (HNSCC). The molecular mechanisms driving ITGB6 upregulation in HNSCC are not well understood. Our study comprehensively analyzed the transcriptional regulation and epigenetic modification mechanisms affecting ITGB6 transcription.
View Article and Find Full Text PDFSci Adv
January 2025
Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
Although lipid-derived acetyl-coenzyme A (CoA) is a major carbon source for histone acetylation, the contribution of fatty acid β-oxidation (FAO) to this process remains poorly characterized. To investigate this, we generated mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1, distal FAO enzyme) knockout macrophages. C-carbon tracing confirmed reduced FA-derived carbon incorporation into histone H3, and RNA sequencing identified diminished interferon-stimulated gene expression in the absence of ACAT1.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.
Enzymes play a pivotal role in orchestrating complex cellular responses to external stimuli and environmental changes through signal transduction pathways. Despite their crucial roles, measuring enzyme activities is typically indirect and performed on a smaller scale, unlike protein abundance measured by high-throughput proteomics. Moreover, it is challenging to derive the activity of enzymes from proteome-wide post-translational modification (PTM) profiling data.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, 210004, P. R. China.
Although a fraction of functional peptides concealed within long non-coding RNAs (lncRNAs) is identified, it remains unclear whether lncRNA-encoded peptides are involved in the malignancy of cervical cancer (CC). Here, a 92-amino acid peptide is discovered, which is named TUBORF, encoded by lncRNA TUBA3FP and highly expressed in CC tissues. TUBORF inhibits ferroptosis to promote the malignant proliferation of CC cells.
View Article and Find Full Text PDFDev Biol
January 2025
The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia. Electronic address:
The MYST family histone acetyltransferase gene, KAT6B (MYST4, MORF, QKF) is mutated in two distinct human congenital disorders characterised by intellectual disability, facial dysmorphogenesis and skeletal abnormalities; Say-Barber-Biesecker-Young-Simpson variant of Ohdo syndrome and Genitopatellar syndrome. Despite its requirement in normal skeletal development, the cellular and transcriptional effects of KAT6B in skeletogenesis have not been thoroughly studied. Here, we show that germline deletion of the Kat6b gene in mice causes premature ossification in vivo, resulting in shortened craniofacial elements and increased bone density, as well as shortened tibias with an expanded pre-hypertrophic layer, as compared to wild type controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!