Objective: Prone sleeping is a major risk factor for the sudden infant death syndrome and is associated with lower blood pressure and impaired arousability from sleep, both of which may be signs of cerebral hypoxia. However, the impact of sleep position on cerebral oxygenation during infancy remains unknown. We assessed the effects of sleeping position, sleep state, and postnatal age on cerebral oxygenation by measuring tissue oxygenation index (TOI) during the first 6 months of infancy.

Subjects And Methods: Seventeen healthy term infants (8 girls and 9 boys) were recruited as study participants. Infants were studied at ages 2 to 4 weeks, 2 to 3 months, and 5 to 6 months by use of daytime polysomnography, with additional measurements of blood pressure (Finometer, FMS Finometer Medical Systems, Amsterdam, Netherlands) and tissue oxygenation index (TOI) (NIRO 200 spectrophotometer, Hamamatsu Photonics KK, Tokyo, Japan).

Results: In infants who slept in the prone position, TOI was lower in both quiet sleep (QS) and active sleep (AS) at age 2 to 4 weeks and in QS at age 2 to 3 months (P < .05). TOI was lower in AS compared with QS in infants aged 2 to 4 weeks (P < .05). When the infants reached 5 to 6 months of age, TOI was greater in AS (P < .05), as there was a profound decrease in TOI during QS (P < .05) over this period. No relationship was identified between blood pressure and TOI at any age.

Conclusions: In healthy infants cerebral oxygenation is reduced during sleep in the prone position. This reduction may underpin the reduced arousability from sleep exhibited by healthy infants who sleep prone, a finding that provides new insight into potential risks of prone sleeping and mechanisms of sudden infant death syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1542/peds.2010-2724DOI Listing

Publication Analysis

Top Keywords

cerebral oxygenation
16
sleep prone
12
blood pressure
12
sleep
10
healthy term
8
infants
8
term infants
8
infants sleep
8
prone sleeping
8
sudden infant
8

Similar Publications

The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery.

View Article and Find Full Text PDF

Reactive oxygen species (ROS)-mediated anticancer modalities, which disturb the redox balance of cancer cells through multi-pathway simulations, hold great promise for effective cancer management. Among these, cooperative physical and biochemical activation strategies have attracted increasing attention because of their spatiotemporal controllability, low toxicity, and high therapeutic efficacy. Herein, we demonstrate a nanogel complex as a multilevel ROS-producing system by integrating chloroperoxidase (CPO) into gold nanorod (AuNR)-based nanogels (ANGs) for cascade-amplifying photothermal-enzymatic synergistic tumor therapy.

View Article and Find Full Text PDF

Constipation is correlated with diminished cognitive function, revealing a possible rectum-brain connection. In this counter-balanced crossover trial, 13 elite triathletes underwent a Stroop test to assess cognitive function and executive control. The Stroop test was conducted both with and without magnesium oxide intake, with a 1-week washout period between sessions.

View Article and Find Full Text PDF

Marginal liver grafts, such as those from cardiac death donors and donors with steatotic organs, are highly vulnerable to ischemia-reperfusion injury. In addition, ex situ graft alteration, either by reduction or splitting, will prolong the static cold storage time and amplify the ischemia-reperfusion injury. Hypothermic oxygenated machine perfusion has the potential to end the oxygen deprivation during preservation and accordingly improve outcomes in some marginal grafts that have been traditionally discarded.

View Article and Find Full Text PDF

Long-Term Exposure to Tire-Derived 6-PPD Quinone Causes Neurotoxicity and Neuroinflammation via Inhibition of HTR2A in C57BL/6 Mice.

Environ Sci Technol

January 2025

School of Basic Medical Sciences, Shandong Second Medical University, 7166 Baotong West Street, Weicheng District, Weifang, Shandong 261053, China.

-(1,3-dimethylbutyl)-'-phenyl--phenylenediamine quinone (6-PPDQ), a novel contaminant derived from tire wear, has raised concerns due to its potential neurotoxicity, yet its long-term effects on mammalian neurological health remain poorly understood. This study investigates the neurotoxic and neuroinflammatory impacts of prolonged 6-PPDQ exposure using male C57BL/6 mice. Behavioral assessments revealed significant cognitive deficits, while biochemical analyses demonstrated increased levels of reactive oxygen species, apoptosis, and blood-brain barrier (BBB) disruption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!