AI Article Synopsis

  • Self-assembling synthetic vectors for DNA delivery are designed to target specific tissues and protect genetic material from degradation while being safe and non-toxic for therapeutic use.
  • These vectors must effectively express therapeutic genes for a limited duration and can encapsulate DNA in different forms depending on the polymer and formulation techniques used.
  • The main challenge lies in overcoming various barriers at tissue and cellular levels to achieve efficient delivery of polymer-based DNA therapeutics.

Article Abstract

INTRODUCTIONSelf-assembling synthetic vectors for DNA delivery are designed to fulfill several biological functions. They must be able to deliver their genetic payload specifically to the target tissue/cells in a site-specific manner, while protecting the genetic material from degradation by metabolic or immune pathways. Furthermore, they must exhibit minimal toxicity and be proven safe enough for therapeutic use. Ultimately, they must have the capability to express a therapeutic gene for a finite period of time in an appropriate, regulated fashion. The DNA encapsulated in these vectors may be in a condensed or noncondensed form, depending on the nature of the polymer and the technique used for formulating the vector system. The whole process presents many barriers at both tissue and cellular levels. Overcoming these hurdles is the principal objective for efficient polymer-based DNA therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1101/pdb.top9DOI Listing

Publication Analysis

Top Keywords

overview condensing
4
condensing noncondensing
4
noncondensing polymeric
4
polymeric systems
4
systems gene
4
gene delivery
4
delivery introductionself-assembling
4
introductionself-assembling synthetic
4
synthetic vectors
4
vectors dna
4

Similar Publications

Magnetic vortex: Fundamental physics, developments, and device applications.

J Phys Condens Matter

January 2025

Institute of Engineering & Management, Department of Basic Science and Humanities, Institute of Engineering & Management, Salt Lake Electronics Complex, Sector V, Salt Lake, Kolkata 700091, India, University of Engineering & Management, University Area, Plot No. III, B/5, New Town Road, Action Area III, Newtown, Kolkata 700160, India, Calcutta, West Bengal, 700091, INDIA.

A magnetic vortex (MV) is one of the fundamental and topologically nontrivial spin textures in condensed matter physics. Magnetic vortices are usually the ground states in geometrically restricted ferromagnets with zero magnetocrystalline anisotropy. Magnetic vortices have recently been proposed for use in a variety of spintronics applications due to their resistance to thermal perturbations, flexibility in changing core polarity, simple patterning procedure, and potential uses in magnetic data storage with substantial density, sensors for the magnetic field, devices for logic operations, and other related fields.

View Article and Find Full Text PDF

Indole, a ubiquitous structural motif in bioactive compounds, has played a pivotal role in drug discovery. Among indole derivatives, indole-3-carboxaldehyde (I3A) has emerged as a particularly promising scaffold for the development of therapeutic agents. This review delves into the recent advancements in the chemical modification of I3A and its derivatives, highlighting their potential applications in various therapeutic areas.

View Article and Find Full Text PDF

Metal nanoclusters (NCs), comprising tens to hundreds of metal atoms, are condensed matter with concrete molecular structures and discrete energy levels. Compared to metal atoms and nanoparticles, metal NCs exhibit unique physicochemical properties, especially fascinating electrocatalytic activities. This review focuses on recent progress in the precise synthesis of metal NCs and their applications in electrochemical analysis of various disease biomarkers.

View Article and Find Full Text PDF

Biomarkers contained in human exhaled breath are closely related to certain diseases. As a noninvasive, portable, and efficient health diagnosis method, the breath sensor has received considerable attention in recent years for early disease screening and prevention due to its user-friendly and easy-accessible features. Although some key challenges have been addressed, its capability to precisely monitor specific biomarkers of interest and its physiological relevance to health metrics is still to be ascertained.

View Article and Find Full Text PDF

Nucleic Acid Packaging in Viruses.

Subcell Biochem

December 2024

Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.

Viruses shield their genetic information by enclosing the viral nucleic acid inside a protein shell (capsid), in a process known as genome packaging. Viruses follow essentially two main strategies to package their genome: Either they co-assemble their genetic material together with the capsid protein or an empty shell (procapsid) is first assembled and then the genome is pumped inside the capsid by a molecular motor that uses the energy released by ATP hydrolysis. During packaging the viral nucleic acid is highly condensed through a meticulous arrangement in concentric layers inside the capsid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!