INTRODUCTIONSection in situ hybridization (SISH) is a high-resolution tool used to analyze gene expression patterns. This protocol utilizes the Tecan Freedom EVO150 platform to perform high-throughput SISH on paraffin sections to detect mRNA with a digoxigenin (DIG)-labeled probe. The slide is mounted and imaged before performing immunohistochemistry (IHC) on the same section. The dual reaction enables a marker of protein expression to be localized on the same section as the mRNA and facilitates more accurate annotation of the gene expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2725362PMC
http://dx.doi.org/10.1101/pdb.prot5030DOI Listing

Publication Analysis

Top Keywords

situ hybridization
8
gene expression
8
high-throughput paraffin
4
paraffin situ
4
hybridization dual
4
dual immunohistochemistry
4
immunohistochemistry mouse
4
mouse tissues
4
tissues introductionsection
4
introductionsection situ
4

Similar Publications

The zona glomerulosa (ZG) synthesizes the mineralocorticoid aldosterone. The primary role of aldosterone is the maintenance of volume and electrolyte homeostasis. Aldosterone synthesis is primarily regulated via tightly controlled oscillations in intracellular calcium levels in response to stimulation.

View Article and Find Full Text PDF

Revisiting the female germline cell development.

Front Plant Sci

January 2025

College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.

The formation of the female germline is the fundamental process in most flowering plants' sexual reproduction. In , only one somatic cell obtains the female germline fate, and this process is regulated by different pathways. Megaspore mother cell (MMC) is the first female germline, and understanding MMC development is essential for comprehending the complex mechanisms of plant reproduction processes.

View Article and Find Full Text PDF

BCOR abnormalities in endometrial stromal sarcoma.

Gynecol Oncol Rep

February 2025

Department of Obstetrics and Gynaecology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia.

Endometrial stromal tumors (ESTs) are uncommon mesenchymal tumors of the reproductive system associated with heterogeneous histomolecular features. According to the World Health Organization (WHO), ESTs are classified into benign endometrial stromal nodules (BESN) and endometrial stromal sarcomas (ESSs), which are further divided into low-grade and high-grade subtypes. High-grade ESS is frequently associated with YWHAE-NUTM2 gene fusions, while a newly recognized subtype with BCOR rearrangements, including fusions, alterations, and internal tandem duplications (ITDs), has recently been incorporated into the molecular classification of ESS.

View Article and Find Full Text PDF

Unilateral whisker denervation activates plasticity mechanisms and circuit adaptations in adults. Single nucleus RNA sequencing and multiplex fluorescence in situ hybridization revealed differentially expressed genes related to altered glutamate receptor distributions and synaptogenesis in thalamocortical (TC) recipient layer 4 (L4) neurons of the sensory cortex, specifically those receiving input from the intact whiskers after whisker denervation. Electrophysiology detected increased spontaneous excitatory events at L4 neurons, confirming an increase in synaptic connections.

View Article and Find Full Text PDF

Oxygen Evolution Reaction of Amorphous/Crystalline Composites of NiFe(OH)/NiFeO.

ACS Nano

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

Orbital structures are strongly correlated with catalytic performance, whereas their regulation strategy is still in pursuit. Herein, the Fe 3 and O 2 orbital hybridization was optimized by controlling the content of amorphous NiFe(OH) (a-NiFe(OH)), which was grown in situ on crystalline NiFeO (c-NiFeO) using an ultrasonic reduction method. The results of electron energy loss spectroscopy (EELS) and X-ray absorption spectra (XAS) revealed that the Fe-O orbital hybridization in a-NiFe(OH) is effectively strengthened by jointing with the adjacent oxygen (O) in c-NiFeO, which is further confirmed by the higher antibonding orbital energies based on density functional theory (DFT) calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!