Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
INTRODUCTIONThis protocol describes chemical mutagenesis of male mice using N-ethyl-N-nitrosourea (ENU), which is the most efficient method for obtaining mouse mutations in phenotype-driven screens. A fractionated dose of ENU, an alkylating agent, can produce a mutation rate as high as 1.5 × 10(-3) in male mouse spermatogonial stem cells. Treatment with ENU produces point mutations that provide a unique mutant resource: They reflect the consequences of single gene changes independent of position effects, provide a fine structure dissection of protein function, display a range of mutant effects from complete or partial loss of function to exaggerated function, and discover gene functions in an unbiased manner. After treatment with ENU, mice are mated in genetic screens designed to uncover mutations of interest. Screens for dominant, recessive, and modifying mutations can be performed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1101/pdb.prot4985 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!