Giant axonal neuropathy (GAN) is a rare autosomal recessive disorder that affects both the peripheral nerves and central nervous system. Since the discovery in 2000 of the gigaxonin gene on chromosome 16q24.1 to be causative, more than 40 GAN mutations have been reported from different racial backgrounds. We report the clinicogenetic findings of a 24-year-old Japanese man with GAN. He had consanguineous parents and showed the phenotype of classical severe GAN. We found a novel homozygous nonsense mutation (p.R162X) in the GAN gene. This is the first genetically-determined Japanese case of GAN, with a follow-up period of more than 15 years. In addition, this mutation is novel. We also reviewed previous reports of GAN to see whether there is any genotype-phenotype correlation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.braindev.2011.02.003DOI Listing

Publication Analysis

Top Keywords

giant axonal
8
axonal neuropathy
8
gan
7
clinicogenetical features
4
features japanese
4
japanese patient
4
patient giant
4
neuropathy giant
4
neuropathy gan
4
gan rare
4

Similar Publications

Giant axonal neuropathy (GAN) is a progressive neurodegenerative disease affecting the peripheral and central nervous system and is caused by bi-allelic variants in the GAN gene, leading to loss of functional gigaxonin protein. A treatment does not exist, but a first clinical trial using a gene therapy approach has recently been completed. Here, we conducted the first systematic study of GAN patients treated by German-speaking child neurologists.

View Article and Find Full Text PDF

We present a 7.5-year-old boy born to a family from the Iranian Azeri Turkish ethnic group with a consanguineous marriage who presents with a unique set of symptoms, suggesting Giant Axonal Neuropathy. He achieved independent walking at age 3 years, with frequent falling during running.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers focused on how different forms of α-synuclein (monomers and multimers) affect synaptic processes using lamprey synapses for their experiments.
  • Both forms impaired vesicle trafficking, but they had distinct effects: monomers caused abnormal fusion/fission and disrupted endocytosis, while multimers decreased vesicle docking.
View Article and Find Full Text PDF

Neurofilaments are intermediate filaments present in neurons. These provide structural support and maintain the size and shape of the neurons. Dysregulation, mutation, and aggregation of neurofilaments raise the levels of these proteins in the blood and cerebrospinal fluid (CSF), which are characteristic features of axonal damage and certain rare neurological diseases, such as Giant Axonal Neuropathy and Charcot-Mare-Tooth disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!