Removal of antibiotics from urban wastewater by constructed wetland optimization.

Chemosphere

Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain.

Published: April 2011

Seven mesocosm-scale constructed wetlands (CWs), differing in their design characteristics, were set up in the open air to assess their efficiency to remove antibiotics from urban raw wastewater. A conventional wastewater treatment plant (WWTP) was simultaneously monitored. The experiment took place in autumn. An analytical methodology including HPLC-MS/MS was developed to measure antibiotic concentrations in the soluble water fraction, in the suspended solids fraction and in the WWTP sludge. Considering the soluble water fraction, the only easily eliminated antibiotics in the WWTP were doxycycline (61±38%) and sulfamethoxazole (60±26%). All the studied types of CWs were efficient for the removal of sulfamethoxazole (59±30-87±41%), as found in the WWTP, and, in addition, they removed trimethoprim (65±21-96±29%). The elimination of other antibiotics in CWs was limited by the specific system-configuration: amoxicillin (45±15%) was only eliminated by a free-water (FW) subsurface flow (SSF) CW planted with Typha angustifolia; doxycycline was removed in FW systems planted with T. angustifolia (65±34-75±40%), in a Phragmites australis-floating macrophytes system (62±31%) and in conventional horizontal SSF-systems (71±39%); clarithromycin was partially eliminated by an unplanted FW-SSF system (50±18%); erythromycin could only be removed by a P. australis-horizontal SSF system (64±30%); and ampicillin was eliminated by a T. angustifolia-floating macrophytes system (29±4%). Lincomycin was not removed by any of the systems (WWTP or CWs). The presence or absence of plants, the vegetal species (T. angustifolia or P. australis), the flow type and the CW design characteristics regulated the specific removal mechanisms. Therefore, CWs are not an overall solution to remove antibiotics from urban wastewater during cold seasons. However, more studies are needed to assess their ability in warmer periods and to determine the behaviour of full-scale systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2011.02.004DOI Listing

Publication Analysis

Top Keywords

antibiotics urban
12
urban wastewater
8
design characteristics
8
remove antibiotics
8
soluble water
8
water fraction
8
removed systems
8
macrophytes system
8
cws
5
wwtp
5

Similar Publications

Distinctive gut antibiotic resistome, potential health risks and underlying pathways upon cerebral ischemia-reperfusion injury.

Environ Pollut

December 2024

Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

Article Synopsis
  • Antibiotic resistance genes (ARGs) from gut microbiota pose significant health risks and can be influenced by non-antibiotic factors like disease states, particularly in cases of cerebral ischemia-reperfusion injury (I/R) which is common in stroke patients.
  • Changes in the gut antibiotic resistome during I/R show an increase in tetracycline ARGs while other types, like aminoglycoside and glycopeptide ARGs, decrease, suggesting a shift in microbial resistance profiles.
  • The study identifies specific ARG hosts and pathways influenced by I/R, highlighting the increase in multidrug resistance genes and various biosynthetic processes in gut microbiota, providing potential targets for health interventions.
View Article and Find Full Text PDF

The Enterobacter cloacae complex, a prominent bacterium responsible worldwide for most bloodstream infections in the hospital environment, has shown broad-spectrum antibiotic resistance, including carbapenems. Therefore, bacteriophages have again attracted the attention of the science and medical community as an alternative to control Multidrug resistant bacteria. In this study, water samples from Río Abajo River, in Panama City, Panama, were collected, for phage isolation, purification, characterization and propagation against the E.

View Article and Find Full Text PDF

Socio-Demographic Characteristics, Clinical Presentations and Treatment Outcome of RT-PCR Positive Covid-19 Patients of Mymensingh Region.

Mymensingh Med J

January 2025

Professor Dr Muhammad Saiful Hasan, Professor and Head, Department of Microbiology and Principal, Netrokona Medical College, Netrokona, Bangladesh; E-mail:

Coronavirus disease-2019 (Covid-19) caused by the virus SARS-CoV 2 is a major health problem across the globe currently. Bangladesh is also defying this highly infectious disease with an exponentially rising number of cases across the country. This study was designed to observe the socio-demographic characteristics, clinical presentation and treatment outcome of Covid-19 cases in Bangladesh.

View Article and Find Full Text PDF

Deciphering unique enzymatic pathways in sulfonamide biotransformation by direct ammonia oxidizer Alcaligenes ammonioxydans HO-1.

Water Res

December 2024

CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China. Electronic address:

Heterotrophic nitrification, similar to autotrophic nitrification, involves key enzymes and reactive nitrogen intermediates during ammonia oxidation, which may influence antibiotic transformation. However, the interference between antibiotic transformation products from ammonia oxidation and secondary metabolites in heterotrophic nitrifiers makes antibiotic transformation pathways more complicated. In this work, we observe that the heterotrophic nitrifier Alcaligenes ammonioxydans HO-1 can effectively convert sulfonamide antibiotics.

View Article and Find Full Text PDF

The presence of antibiotics in the environment is of significant concern due to their adverse effects on aquatic ecosystems. This study provides an assessment of potential ecological risks (RQ) associated with the concentrations of eight antibiotics and antiparasitics (amoxicillin-AMO, azithromycin-AZI, ciprofloxacine-CIP, ofloxacine-OFL, oxfendazole-OXF, lincomycin-LIN, sulfacetamide-SCE and sulfamethoxazole-SME) in the surface water of 13 urban lakes in Hanoi city, Vietnam during the period 2021-2023. The findings revealed considerable variations in the total concentrations of these 8 substances (T), ranging from below the method detection limit (< MDL) to 2240 ng L with an average of 330.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!