Extended staphylococcal enterotoxin D expression in ham products.

Food Microbiol

Applied Microbiology, Lund Institute of Technology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.

Published: May 2011

Staphylococcal enterotoxin D (SED) is one of the most frequently recovered enterotoxins in staphylococcal food poisoning (SFP) outbreaks. The expression and production of SED were investigated in three ham products, i.e. boiled ham, smoked ham and dry-cured Serrano ham incubated at room temperature for seven days. Staphylococcus aureus was also, as a reference, grown in cultivation broth during optimal growth conditions for seven days. In boiled and smoked ham, continuous sed expression was observed throughout the incubation period with a second increase in sed expression found after five days of incubation. In smoked ham, nine times less SED per colony-forming unit of S. aureus was detected than in boiled ham. In boiled ham, the SED levels unpredictably decreased after three days of incubation. In the Serrano ham, SED was detected after five days of incubation although S. aureus growth was poor and sed expression was too low to determine. After five days of incubation, all three products contained enough SED to cause SFP. These results show that the specific production levels of SED vary in the different ham products, and that toxin production was in part uncoupled from bacterial growth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2010.11.013DOI Listing

Publication Analysis

Top Keywords

days incubation
16
ham products
12
boiled ham
12
smoked ham
12
sed expression
12
ham
11
sed
10
staphylococcal enterotoxin
8
serrano ham
8
ham sed
8

Similar Publications

The inherent deficiency of phospholipids in limits its nutritional value as live prey for marine fish larvae. In our previous study, we optimized a phospholipid enrichment method by incubating nauplii with 10 g of soybean lecithin per m of seawater for 12 h, significantly enhancing their phospholipid content. : The present study evaluated the impact of this enrichment on yellow drum () larvae, focusing on growth performance, intestinal morphology, body composition, weaning success, and desiccation stress resistance.

View Article and Find Full Text PDF

Cold-Spray Deposition of Antibacterial Molybdenum Coatings on Poly(dimethylsiloxane).

ACS Appl Bio Mater

January 2025

Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.

Despite their widespread utilization in biomedical applications, these synthetic materials can be susceptible to microbial contamination, potentially compromising their functionality and increasing the risk of infection in patients. In this study, molybdenum (Mo), an essential metal in biological systems, was investigated as a Mo-based cold-sprayed coating on poly(dimethylsiloxane) (PDMS) for its potential use as biocompatible and antimicrobial surfaces for biomedical applications. Various cold-spray parameters were employed in the fabrication of Mo-embedded PDMS surfaces to alter the surface structure of the substrate, Mo loading density, and embedding layer thickness.

View Article and Find Full Text PDF

We recently characterized the potent antiplasmodial activity of the aggregated protein dye YAT2150, whose presumed mode of action is the inhibition of protein aggregation in the malaria parasite. Using single-dose and ramping methods, assays were done to select Plasmodium falciparum parasites resistant to YAT2150 concentrations ranging from 3× to 0.25× the in vitro IC of the compound (in the two-digit nM range) and performed a cross-resistance assessment in P.

View Article and Find Full Text PDF

Recent advances in bioengineering have made it possible to develop increasingly complex biological systems to recapitulate organ functions as closely as possible in vitro. Monitoring the assembly and growth of multi-cellular aggregates, micro-tissues or organoids and extracting quantitative information is a crucial but challenging task required to decipher the underlying morphogenetic mechanisms. We present here an imaging platform designed to be accommodated inside an incubator which provides high-throughput monitoring of cell assemblies over days and weeks.

View Article and Find Full Text PDF

Valorization of Cocoa and Peach-Palm Wastes for the Production of Amylases by Pleurotus pulmonarius CCB19 and Its Application as an Additive in Commercial Detergents.

Appl Biochem Biotechnol

January 2025

Department of Biological Sciences, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil.

In the context of agribusiness, the agricultural and livestock sectors generate a considerable quantity of waste on a daily basis. Solid-state fermentation (SSF) represents a potential alternative for mitigating the adverse effects of residue accumulation and for producing high-value products such as enzymes. Pleurotus pulmonarius is capable of producing a number of commercial enzymes, including amylases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!