Dynamics and species diversity of communities of lactic acid bacteria and acetic acid bacteria during spontaneous cocoa bean fermentation in vessels.

Food Microbiol

Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-Engineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.

Published: May 2011

AI Article Synopsis

  • A benchmark cocoa bean fermentation process was developed to study bacterial starter cultures for cocoa bean fermentation under natural conditions, using a 20 kg cocoa pulp-bean mass in triplicate.
  • The microbiological analysis revealed limited bacterial diversity, with dominant lactic acid bacteria (Lactobacillus plantarum and Lactobacillus fermentum) and acetic acid bacteria (Acetobacter pasteurianus) present throughout the fermentation, mirroring field fermentation dynamics.
  • Despite the findings supporting similar fermentation kinetics to spontaneous processes, challenges included poor mixing of the cocoa mass and slow yeast growth.

Article Abstract

To speed up research on the usefulness and selection of bacterial starter cultures for cocoa bean fermentation, a benchmark cocoa bean fermentation process under natural fermentation conditions was developed successfully. Therefore, spontaneous fermentations of cocoa pulp-bean mass in vessels on a 20 kg scale were tried out in triplicate. The community dynamics and kinetics of these fermentations were studied through a multiphasic approach. Microbiological analysis revealed a limited bacterial species diversity and targeted community dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation, as was the case during cocoa bean fermentations processes carried out in the field. LAB isolates belonged to two main (GTG)(5)-PCR clusters, namely Lactobacillus plantarum and Lactobacillus fermentum, with Fructobacillus pseudofilculneus occurring occasionally; one main (GTG)(5)-PCR cluster, composed of Acetobacter pasteurianus, was found among the AAB isolates, besides minor clusters of Acetobacter ghanensis and Acetobacter senegalensis. 16S rRNA-PCR-DGGE revealed that L. plantarum and L. fermentum dominated the fermentations from day two until the end and Acetobacter was the only AAB species present at the end of the fermentations. Also, species of Tatumella and Pantoea were detected culture-independently at the beginning of the fermentations. Further, it was shown through metabolite target analyses that similar substrate consumption and metabolite production kinetics occurred in the vessels compared to spontaneous cocoa bean fermentation processes. Current drawbacks of the vessel fermentations encompassed an insufficient mixing of the cocoa pulp-bean mass and retarded yeast growth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2010.10.010DOI Listing

Publication Analysis

Top Keywords

cocoa bean
20
acid bacteria
16
bean fermentation
16
species diversity
8
lactic acid
8
acetic acid
8
spontaneous cocoa
8
cocoa pulp-bean
8
pulp-bean mass
8
community dynamics
8

Similar Publications

Determination and validation of polycyclic aromatic hydrocarbons (PAH4) in katsuobushi, plant-based food supplements, and cocoa bean shells using GC-MS/MS.

J Food Drug Anal

December 2024

Division of Research and Analysis, Taiwan Food and Drug Administration, Ministry of Health and Welfare, No.161-2, Kunyang St, Nangang District, Taipei City 11561, Taiwan, R.O.C.

Polycyclic aromatic hydrocarbons (PAHs) are primarily generated through the incomplete combustion or pyrolysis of organic materials in various industrial processes. Foods may become contaminated with environmental PAHs found in air, soil, or water, or through industrial food processing methods such as smoking, roasting, drying, and grilling. The Ministry of Health and Welfare in Taiwan has established maximum levels for benzo[a]pyrene (BaP) and indicative values for BaP as well as PAH4 (the sum of benz[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene) in foods as operational guidelines.

View Article and Find Full Text PDF

This study explored the synergistic combination of silver nanoparticles (AgNPs), eucalyptus-derived nanofibrillated cellulose (NFC) and cassava starch to develop bionanocomposites with advanced properties suitable for sustainable and antifungal packaging applications. The influence of AgNPs synthesized through a green method using cocoa bean shell combined with varying concentrations of NFC were investigated. Morphological (scanning electron microscopy and atomic force microscopy), optical (L*, C*, °hue, and opacity), chemical (Fourier transform infrared spectroscopy), mechanical (puncture force, tensile strength, and Young's modulus), rheological (flow curve and frequency sweeps, strain, and stress), barrier, and hydrophilicity properties (water vapor permeability, solubility, wettability, and contact angle), as well as the antifungal effect against pathogens (Botrytis cinerea, Penicillium expansum, Colletotrichum musae, and Fusarium semitectum), were analyzed.

View Article and Find Full Text PDF

The increase in food production is accompanied by an increase in waste, particularly agricultural by-products from cultivation and processing. These residues are referred to as agricultural by-products. To address this issue, biotechnological processes can be used to create new applications for these by-products.

View Article and Find Full Text PDF

Following the implementation of food safety limits on cadmium (Cd) in cacao products, there has been a growing demand for monitoring Cd in cacao tissues and soils. Traditional methods like acid digestion followed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) are time-consuming and costly. X-ray Fluorescence is an alternative technique that offers advantages in terms of speed, cost, ease of use and less environmental impact.

View Article and Find Full Text PDF

Modulating fine flavor cocoa attributes: Impact of seed-to-bean transformation under controlled conditions on metabolite, volatile and sensory profiles.

Food Res Int

November 2024

Process & Quality Cocoa Laboratory, Centro de Investigación Palmira, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Palmira, Valle del Cauca, Colombia; Cacao of Excellence Programme, Bioversity International, Italy. Electronic address:

Fine-flavored chocolates are distinguished by their complex and distinct flavor profiles, which includes notes such as floral, fruity, nutty, and spicy. This study sought to modulate the flavor development of chocolates by establishing controlled processing conditions during the transformation from seed to bean in a laboratory setting, to produce superior quality chocolates. Our experimental setup comprised two varying temperature levels (30 °C and 45 °C) and three organic acids (OAs: acetic, lactic, and citric acids) at concentrations of 1-30 g/L to adjust the pH of the transformation system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!